

USER'S MANUAL STATEMENT

WARNING
Thlsequlpmenl has been certilled 10 complywllh the limits lor a Class B computing device.
pursuanl10 subparl J 01 Part 1501 the Federal CommumcallOflS CommlSSlon"s lules. which
are deSigned \0 provide reasonable prOleC\IOn agalns! radio and lelevlslOI1lnterference 111 a
resldenhal installallOn, II not Installed properly. In Strict accordance wl!h the manulac­
ture(s InstructIOns. it may cause such In!ellerenee II you suSpecl mterfererlCe. you can
test this eqUipment by lurnmQ 1\ 011 and on II this eqUIpment does cause Interference
coneet it by dOing any ol\he lallowlng

• Reonent the receiving antenna 01 AC plug
• Change the relative poSitIOns 01 the computer and the

receiver
• Plug the computer Into a dilleren! 001101 so the computer and

receiver are on dilleren! CirCUitS

CAUTION Only peripherals With shield grounded cables (com­
puter Input-output devlces.termmals. printers. etc.). certilled to
comply With Class B limits. can be al1ached to this computer
Operation with non·certllied perrpherals IS likely to result In
commUnications mterrerence

Your house AC wall receptacle must be a three-pronged type
(AC ground). 11 not. contacl an electriCian to Install the proper
receptacle II a mul1l·connector OOll IS used to connect the com·
puter and peripherals to AC. the ground must be common to all ~

units

11 necessary. consult your Commodore dealer or an experrenced radlo·televlsion technl'
clan lor additIOnal suggestions You may lind the lollowrng FCC booklet helplul . How to -..J
Identify and Resolve Radio-TV Inter terence Problems The booklet IS available from the
US Government PrrntmgOfhce. Washmgton. 0 C 20402, stock no 004-000-00345-4

Copyrrght © 1985 by Commodore ElectrOniCS Limited
All rights reserved

ThiS manual contams copYl1ghted and proprretary InlormatlOn No pall 01 thiS publ,catron
may be reproduced. stored In a retfleval system, or transmitted In any form or by any
means. electronic. mechanical, photocopymg, recording or otherwise. wllhOut the prior
written permiSSIOn 01 Commodore ElectrOniCS limited

Commodore BASIC 70

Copyllght © t985 by Commodore Electronics Limited
All righ ts reserved

Copyright © 1977 by Mlcrosoit Corp
All rights reserved

CPfM~ Plus VerSion 3,0

Copyright © ,982 by DI91tai Research Inc
All fights reserved

CP/M IS a registered lrademarkot O'gllal Research Inc

-

TABLE OF
CONTENTS

Chapter I-Introduction

Section l-How to Use this Guide
Section 2-0verview of the Commodore C128

Personal Computer

Chapter II-Using Ct28 Mode

3

7

Section 3-Getting Started in BASIC 17
Section 4-Advanced BASIC Programming 49
Section 5-Some BASIC Commands and Keyboard

Operations Unique to C128 Mode 73
Section 6-Color, Animation and Sprite Graphics

Statements Unique to the C128 93
Section 7-Sound and Music in C128 Mode 129
Section B-Using 80 Columns 161

Chapter III-Using C64 Mode

Section 9-Using the Keyboard in e64 Mode 171
Section lO-Storing and Reusing your Programs in

C64 Mode 177

Chapter IV-Using CP/M Mode

Section II-Introduction to CP/M 3.0 185
Section 12-Files, Disks and Disk Drives in CP/M 3.0 193
Section 13-Using the Console and Printer in CP/M 3.0 203
Section 14-Summary of Major CP/M 3.0 Commands 209
Section 15-Commodore Enhancements to CP/M 3.0 219

Chapter V-Basic 7.0 Encyctopedia

Section 16-lntroduction 227
Section 17 -BASIC Commands And Statements 233
Section 18-BASIC Functions 303
Section 19- Variables And Operators 323
Section 20-Reserved Words and Symbols 329

Appendices

A. BASIC Language Error Messages 335
B. DOS Error Messages 341
C. Connectors/Ports for Peripheral Equipment 347
D. Screen Display Codes 353
E. ASCII and CHR$ Codes 355
F. Screen and Color Memory Maps 357
G. Derived Trigonometric Functions 361
H. Memory Map 363
I. Control and Escape Codes 365
J. Machine Language Monitor 369
K. BASIC 7.0 Abbreviat ions 379
L. Disk Command Summary 383

Glossary

Index

365

399

•

•

•

CHAPTER

INTRODUCTION

I
'-'

, I
• -

SECTION 1
How to Use
this Guide

3 INTRODUCTION-How 10 Use this GUide

!
'-

How to Use this
Guide

This Commodore 128 System Guide is designed to help you make
full use of the advanced capabili ties of the Commodore 128 com­
puter. Here's how to use this Guide:

Before you read any further in this System Guide. make sure
you have read the other book packed in the computer carton,
Introduc;ng The Commodore 128 Personal Computer,
which contains important information on gett ing started with
the Commodore 128.

If you are primarily interested in using the BASIC language to
create and run your own programs, you should first read Sec­
tion 2 of this chapter. This section summarizes the three operat·
ing modes of IheCommodore 128. Then read Chapter II , USING
C128 MODE. This chapter introduces you to the BASIC pro­
gramming language as used in both C128 and C64 modes;
describes the Commodore 128 keyboard; defines some
advanced commands you can use in both C128 and C64
modes; shows how to use a number of powerful new BASIC
commands (including color, graphic and sound commands) that
are unique 10 C128 mode; and describes how to use the 80·
column capabilities available in C128 mode.

/fyou wantto use BASIC in C64 mode. read Chapter III . USING
C64 MODE. You can use all the Commodore 64 BASIC 2.0 com·
mands in C64 mode. Note, however, thaI the Commodore 128
BASIC 7.0 language provides many more BASIC commands
than BASIC 2.0, and the C128 BASIC commands are more pow­
erful and easier to use than equivalent BASIC 2.0 commands.
Remember, you can use C64 mode to run any of the thousands
of C64 software packages currently available.

If you want to use CP/M on the Commodore 128, read Chapter
IV, USING CP/M MODE. This chapter tells you how to start up
and use CP/M on the Commodore 128. In CP/M mode you can
choose from thousands of commercial software packages,
including the PERFECT series (PERFECT WRITER. PERFECT
CALC, PERFECT FILER). You can also create your own CP/M
programs.

If you want details on the BASIC 7.0 commands, read Chapter V,
BASIC 7.0 ENCYCLOPEDIA This chapter gives format and
usage details on all BASIC 7.0 commands, statements and
functions.

I(after reading Chapters Ilhrough V, you are looking for addi·
tional technical information about a particular Commodore 128

5 INTRODUCTION-How to Use this Guide

topic, first check the Appendices to this System Guide. These
appendices contain a wide range of information, such as a
complete list of BASIC and DOS error messages and a sum­
mary of disk commands. A Glossary following the Appendices
provides definitions of computing terms.

For complete technical details about any feature of the Commodore
128, consult the Commodore 128 Programmer's Reference Guide.

6 INTRODUCTION-How 10 Use Ihis Guide

SECTION 2
Overview of the
Commodore C128
Personal
Computer

7

OVERVIEW OF THE COMMODORE C12S PERSONAL
COMPUTER
C12S Mode
C64 Mode
CP/M Mode

TURNING ON YOUR COMMODORE C12S

USING SOFTWARE

SWITCHING BETWEEN MODES

INTRODUCTION-Overview of the Commodore C128 Personal Computer

9
10
10
11

11

12

13

-

Overview of the
Commodore C128
Personal
Computer

The Commodore 128 incorporates many powerful new features.
including:

• A greatly enhanced BAStC language-Commodore BASIC
7.0-that provides extensive new commands and
capabilities

• 128K of RAM, which can be expanded to 256 or 512K with
opt ional RAM expansion modules

• 40- and 80-column output

• Operative with new 1571 fasl disk drive

• 2 mHz operation

• CP/M 3.0 operation
• A professional-type keyboard including a lull numeric keypad

• A built-in machine language monitor

9 INTRODUCTION-Overview of the Commodore Cl2S Personal Compu ter

The Commodore 128 Personal Computer is actually three computers
in one, offering three primary operating modes:

• C128 Mode

• C64 Mode

• CP/M Mode

Here's a summary of what each mode offers:

C128 Mode

In C128 mode, the Commodore 128 Personal Computer provides
access to 128K of RAM and a powerful extended BASIC language
known as BASIC 7.0. BASIC 7.0-which offers over 140 commands,
statements and functions-has been created by Commodore to
provide better and easier ways to perform many sophisticated pro­
gramming tasks, including those involving graphics. animation,
sound and music. C128 mode also provides both 40- and 80·column
output capabilities and full use of the 92-key keyboard. The keyboard
includes a numeric keypad in addition to Escape. Tab, Alpha Lock
and Help keys. A built-in machine language monitor allows you to
create and debug your own machine language programs. You can
use these programs in conjunction with a BASIC program. In C128
mode you can use a number of new peripheral devices from Com­
modore, including a new fast-serial disk drive, a mouse, and a 40/80-
column composite video/RGBI monitor. And you can use all standard
Commodore serial peripherals.

C64 Mode

In C64 mode, the Commodore 128
operates exactly like a Commodore
64 computer. The Commodore 128
retains all the capabilities of the com­
mercially successful C64, thus allow­
ing you to take full advantage of the
wide range of available C64 software_
You also have full compatibility with
C64 peripherals, including standard

casset te , joystick, user port and serial devices, as well as C64 com­
posite video monitor and TV outputs.

10 INTRODUCTION-Overviewo! the Commodore C128 Personal CompUler

Turning On Your
Commodore 128

11

C64 mode provides the BASIC 2.0 language. 40·column output and
access to 64K of RAM. The main keyboard layout , except for the
placement of the function keys. is the same as that of a Commodore
64 compu ter. Alilhe C64 graphics, color and sound capabilities are
retained. used exact ly as on a Commodore 64.

CP/M Mode

In CP/M mode, an onboard zao microprocessor gives you all the
capabilities of Digital Research's CP/M Plus version 3.0. plus several
new capabilities added by Commodore. The Commodore 128's CP/M
package, called CP/M Plus, provides 128K Of RAM: 40· and BO·
column output ; access to the fu ll keyboard, including the numeric
keypad and special keys; and access to the new Commodore 1571
fast serial disk drive as well as standard serial peripherals.

Chapters II, III and IV, which include Sections 3 through 15, tell you
how to access and use the capabilities of the three powerful and
versatile operating modes of the Commodore 128 Personal
Computer.

Before you turn on your Commodore 12B, there are a few things to
check to make sure that you get started properly. One thing you
should do before powering up the computer is to make sure the
40f80 key on the top row of the keyboard is set to match your monitor.
For example. if you have a 40·column monitor. the 40/80 key should
be in the up position. If you have an BO·column monitor the 40/80
key should be depressed.

INTRODUCTION-Overview of the Commodore C128 Personal Computer

Using Software

If you are using the Commodore 1902 dual monitor in 40-column
format , the 40lBO key should be up and the slide switch on the front
of the monitor should be in the middle position. In BO-column format
using the 1902 dual monitor, the 40/80 key should be depressed and
the switch on the front of the moni tor should be in the extreme right
position.

Regardless of which screen format you are using, check to see that
both the ALL CAPS and SHIFT LOCK keys are in the up position. If
they 're not, you may get no picture at all. or the screen may display
unfamiliar symbols. (See Section 5 for a description of all the special
keys used in C128 made.)

If you are using a MAGIC VOICE speech module, insert the module in
the expansion port and, while holding down the Commodore key,
turn on the power switch. Never plug in any cartridge with the
power turned on.

If you experience difficulty getting a cartridge to power-up in C64
mode, plug in the cartridge with the power off; then hold down the
Commodore key and turn on the computer.

If you have the external CP/M 2.2 cartridge marketed for the Com­
modore 64, do not plug it into the Commodore 128. The Commodore
128 has a Z80 microprocessor already on-board for CP/M 3.0. If you
do plug in the CP/M 2.2 cartridge, it can cause unpredictable results.

If you are using software involving a light pen, plug the light pen into
Controller Port 1, located on the right side of the C128 near the power
switch.

12 INTRODUCTION-Overview of the Commodore Cl28 Personal Computer

Switching The following chart tells how to switch to one mode from another.
Between Modes

~ FROM
TO OFF C128 C128 e64 CP/M CP/M

40COl 80 COl 40 COL 80COl
e128 1. Chetk that 1. Press ESC key: 1. Check that 1. Check that 1. Check thaI
40 COL 40/ 80 key is release . 40/ 80 key Is 40 / 80 key is UP. 40 / 80 key Is UP.

UP. 2 Press)(key. UP. 2. Turn computer 2. Turn computer
2. Turn computer OR 2. Turn computer OFF, then ON . OFF, then ON.

ON . 1. Check that OFF, then ON.
40/ 80 key is
UP.

2 Press RESET
bulton .

C128 1. Press 40/ 80 Press ESC key; 1. Press 40/ 80 Press 40/80 key 1. Check that

~ 80 COL key DOWN . release. key DOWN. DOWN . 40/ 80 key is
2. Turn computer 2. Press)(key. 2. Turn computer 2. RemoveCP/M DOWN.

ON. OR OFF. then ON. system disk from 2. Remove CPIM
1. Press 40/80 drive. if sySlem disk Irom

key OOWN. necessary. drive. if

2. Press RESET 3. Turn computer necessary.

button. OFF. then ON . 3. Turn computer
OFF, then ON.

~

eM 1. Hold C/o key 1. Type GO 64: 1. Type GO 64: 1. Turn computer 1. Turn computer
~OWN . press RETURN . press RETURN . OFF. OFF.

2. Turn computer 2. The computer 2 The computer 2 Check that 401 2. Check that 40/
ON . responds: responds: 80 key Is UP. 80 key Is UP.

OR ARE YOU SURE? ARE YOU SURE? 3. Hold DOWN C/o 3. HOld OOWN C/o
1. Insert C64 Type Y: press Type Y: press key while turning key while turning

cartridge. RnURN . RETURN . computer ON computerDN.
2. Turn computer OR OR

ON . 1. Turn computer 1. Turn computer
OFF. OFF.

2. Insert C54 2. Insert C64
cartridge. cartridge.

3. Turn power ON . 3. Turn power ON.

CP/M 1. Turn disk drive 1. Turn disk drive 1. Turn disk drive 1. Check that I. Insert CP/M
40 COL ON . ON. ON . 40/80 key is utilities disk in

2. Inser! CP/M 2. Insert CP/M 2. Insert CP/M UP. drive.
system disk In system disk in system disk in 2. Turn disk drive 2. At screen
drive drive. drive . ON. prompt, A) type:

3. Check that 3. Check that 3. Check that 3. Insert CP/M DEYUCOIO.IT: •• tII.

40/ 80 key is 40/ 80 key is 40180 key Is system disk In 3. Press RETURN.
UP. UP. UP. drive.

4 . Turn computer 4. Type: 800T 4. Type: 800T 4. Turn computer
ON . 5. Press RETURN 5. Press RETURN OFF, then ON.

CP/M 1. Turn disk drive 1. Turn disk drive 1. Turn disk drive 1. Press 40 / 80 1. Insert CP/M
80 COL ON . ON. ON key OOWN. utilities disk in

2. Insert CP/M 2. Insert CP/M 2. Insert CP/M 2. Turn diSk drive drive.
system disk in system disk in system disk in ON. 2. At screen
drive. drive. drive. 3. Insert CP/M prompt. A) type:

3. Press 40180 3. Press 40/ 80 3. Check that system disk in D£YJCE~' a.CO<.

key ~OWN . key ~OWN. 40/ 80 key is drive. 3. Press RETURN .

4 . Turn computer 4. Type: 800T DOWN . 4. Turn computer
ON . 5. Press RETURN 4 . Type: 800T OFF. then ON.

I 5. Press RETURN

NOTE: If you are using a Commodore 1902 dual monitor, remember
to move the video switch on the monitor from COMPOSITE or
SEPARATED to RGBI when switching from 4o-column to 8().column
display; reverse this step when switching from 80 to 40 columns.

14 INTRODUCTION-Overview of Ihe Commodore C128 Personal Compu ler

CHAPTER

USING C128 MODE

._ aC

SECTION 3 BASIC PROGRAMMING LANGUAGE 19
Getting Started Direct Mode 19
In Basic Program Mode 19

USING THE KEYBOARD 20
Keyboard Character Sets 21
Using Ihe Command Keys 21
Function Keys 27
Displaying Graphic Characters 27
Rules for Typing BASIC Language Programs 27

GETTING STARTED-The PRINT COMMAND 28
Printing Numbers 28
Using the Question Mark to Abbreviate the PRINT

Command 29
Printing Text 29
Printing in Different Colors 30
Using the Cursor Keys Inside Quotes with the PRINT

Command 31

'- BEGINNING TO PROGRAM 31
What a Program Is 31
Line Numbers 31
Viewing your Program-The LIST Command 32
A Simple Loop-The GOTO Stalemenl 33
Clearing the Computer's Memory-The NEW Command 34
Using Color in a Program 34

EDITING YOUR PROGRAM 35
Erasing a Line from a Program 35
Duplicating a Line 35
Replacing a Line 35
Changing a Line 35

MATHEMATICAL OPERATIONS 36
Addition and Subtraction 36
Multiplication and Division 36
Exponentiation 37
Order of Operations 37
Using Parentheses to Define the Order of Operations 38

~ CONSTANTS, VARIABLES AND STRINGS 38
Constants 38
Variables 39
Strings 40

17 USING e128 MODE-Getting Started In BASIC

SAMPLE PROGRAM

STORING AND REUSING YOUR PROGRAMS
Formatting a Disk-The HEADER Command
SAVEing on Disk
SAVEing on Cassette
LOADing from Disk
LOADing from Cassette
Other Disk·Related Commands

18 USING C128 MODE-Getting Started In BASIC

41

41
42
44
44
45
45
46

BASIC
Programming
Language

The BASIC programming language is a special language that leIs you
communicate with your Commodore 128. Using BASIC is one means
by which you instruct your computer what to do.

BASIC has its own vocabulary (made up of commands, statements
and functions) and its own rules of structure (called syntax). You
can use the BASIC vocabulary and syntax to create a set of instruc­
tions called a program, which your computer can then perform or
"run."

Using BASIC, you can communicate with your Commodore 128 in
two ways: within a program, or directly (outside a program).

Direct Mode

Your Commodore 128 is ready to accept BASIC commands in direct
mode as soon as you turn on the computer. In the direct mode, you
type commands on the keyboard and enter them into the computer
by pressing the RETURN key. The computer executes all direct
mode commands immediately after you press the RETURN key.
Most BASIC commands in your Commodore 128 can be used in
direct mode as well as in a program.

Program Mode

In program mode you enter a set of instructions that perform a spe·
cific task. Each instruction is contained in a sequential program line.
A statement in a program may be as long as 160 characters; this is
equivalent to four full screen lines in 40-column format , and two full
screen lines in 80-column formal.

Once you have typed a program, you can use it immediately by typ­
ing the RUN command and pressing the RETURN key. You can also
store the program on disk or tape by using the OSAVE (or SAVE) com­
mand. Then you can recall it from the disk or tape by using the
DLOAD (or LOAD) command. This command copies the program
from the disk or tape and places that program in the Commodore
128's memory. You can then use or "execute" the program again by
entering the RUN command. All these commands are explained later
in this section. Most of the time you will be using your computer with
programs, including programs you yourself write, and commercially
available software packages. The only time you operate in direct
mode is when you are manipulating or editing your programs with

19 USING C128 MODE-Getting Started in BASIC

Using the
Keyboard

commands such as LlS1 LOAD, SAVE and RUN . As a rule, the differ­
ence between direct mode and operation within a program is that
direct mode commands have no line numbers.

Shown below is the keyboard of the Commodore 128 Personal
Computer.

~&;'&;'k1 ~ ,- '- ",. \

l
' ~1 CI;:I 1'111 rrrrll , r·, L I: t, 1 t t t !. " !" (' (­

, = ' • I-Y- I- r ~ r: I: (. f' (-r -
. . -t:1:.r: 1'1" n! - r

........

Using BASIC is essentially the same in both C64 and C128 modes.
Most of the keys, and many of the commands you will learn, can be
used to program BASIC in either mode. The keys that are shaded in
the diagram above can be used in C64 mode. In C128 mode you can
use all of the keys on the keyboard.

20 USING C128 MODE-Getting Started in BASIC

Keyboard Character Sets

The Commodore 128 keyboard offers two different sets of
characters:

• Upper-case letters and graphic characters
• Upper- and lower case letters

In eO-column format, both character sets are available simultane­
ously_ This gives you a total of 512 different characters that you can
display on the screen. In 40 column format you can use only one
character set at a time.

When you turn on the Commodore 128 in 40-column format , the key­
board normally is using the upper·case/graphic character set. This
means that everything you type is in capital letters. To switch back
and forth between the two character sets, press the SHIFT key and
the C· key (the COMMODORE key) at the same time. To practice
using the two character sets turn on your computer and press sev­
eralletters or graphic characters. Then press the SHIFT key and the
Cl (Commodore) key. Not ice how the screen changes to upper- and
lower-case characters. Press SHIFT and Cl again to return to the
upper-case and graphic character set.

Using the Command Keys

COMMAND keys are keys that send messages to the computer.
Some command keys (such as RETURN) are used by themselves.
Other command keys (such as SHIFT, CTRL, C' and RESTORE) are
used with other keys. The use of each of the command keys is
explained below.

Return When you press the RETURN key, what you
have typed is sent to the Commodore 128 com­
puter's memory. Pressing the RETURN key also
moves the cursor (the small flashing rectangle
that marks where the next character you type
will appear) to the next line.

AI times you may misspell a command or Iype in
something the computer does not understand.
Then, when you press the RETURN key, you

21 USING C128 MODE-Getl ing Started in BASIC

Shift

Shift Lock

probably will get a message like SYNTAX
ERROR on the screen. This is called an "Error
Message." Appendix A lists the error messages
and tells how to correct the errors.

NOTE: In the examples given in this book. the
following symbol indicates that you must press
the RETURN key:

~RETQR"

There are two SHIFT keys on the bottom row of
the keyboard. One key is on the left and the
other is on the right , just as on a standard type­
writer keyboard.

The SHIFT key can be used in three ways:

1. With the upperllower-case character set.
the SHIFT key is used like the shift key on a
regular typewriter. When the SHIFT key is
held down, it lets you print capital letters or
the top characters on double·character
keys.

2. The SHIFTkey can be used with some of
the other command keys to perform special
functions.

3. When the keyboard is set for the upper­
case/graphic character set, you can use the
SHIFT key to print the graphic symbols or
characters that appear on the front face of
certain keys. See the paragraphs entitled
" Displaying Graphic Characters" at the end
of this section for more details.

When you press this key down, it locks into
place. Then, whatever you type will either be a
capital letter, or the top character of a double·
character key. To release the lock, press down
on the SHIFT LOCK key again.

22 USING C128 MODE-Gelling Started in BASIC

Moving the
Cursor

In C128 mode, you can move the cursor by
using either the four arrow keys located just
above the top right of the main keyboard, or the
two keys labeled CRSR. at the right 01 the bot~
tom row of the main keyboard.

Using the Four Arrow Cursor Keys

1n C128 mode, the cursor can be moved in any
direction simply by using the arrow key in the
top row that points in the direction you want to
move the cursor. (These keys cannot be used in
C64 mode).

Using the CRSR keys

In both C128 and C64 mode, you can use the
two keys on the right side of the bottom row of
the main keyboard to move the cursor:

+
• Pressing the CRSR key alone moves the cur·

sor down. ...

• Pressing the CR"sR and SHIFT keys together
moves the cursot;. up.

+-
• Pressing the CRSR key alone moves the cur·

sor right. :
• Pressing the CR..SR and SHIFT keys together

moves the cursor left.

You don't have to keep tapping a cursor key to
move more than one space. Just hold the key
down and the cursor continues to move until it
reaches the position you want.

Notice that when the cursor reaches the right
side of the screen, it "wraps" . or star ts again at
the beginning of the next row. When moving left,
the cursor will move along the line until it
reaches the edge of the screen, then it will jump
up to the end of the preceding line.

23 USING C128 MODE-Getting Started In BASIC

InstlDeI

You should try to become very familiar with the
cursor keys, because moving the cursor makes
your programming much easier. With a little
practice you will find that you can move the cur­
sor almost without thinking about it.

This is a dual purpose key. INST stands for
INSerT, and DEL lor DELele.

Inserting Characters

You must use the SHIFT key with the INST/DEL
key when you want 10 insert characters in a line.
Suppose you left some characters out of a line,
like this:

WHILE U WERE OUT

To insert the missing characters, first use the
cursor keys to move the cursor back to the
error, like this:

WHILE. WERE OUT

Then, while you hold down the SHIFT key, press
the INST/DEL key until you have enough space
to add the missing characters:

WHILE. U WERE OUT ~

Notice that lNST doesn't move the cursor; it just
adds space between the cursor and the charac­
ter to its right. To make the correction, simply
type in the missing "Y" and "0", like this:

WHILE YOU WERE OUT

Deleting Characters

When you press the DEL key, the cursor moves
one space to the left and erases the character
that is there. This means that when you want to
delete something, you move the cursor just to
the right 01 the character you want to DELete.
Suppose you have made a mistake in typing, like '---
this:

PRINT "ERROER"

24 USING e128 MODE-Gelling Started In BASIC

Control

RunlStop

You wanted to type the word ERROR. not
ERROER. To delete the incorrect E that pre­
cedes the final R, position the cursor in the
space where the final R is located. When you
press the DEL key, the character to the right of
the cursor (the R) automatically moves over one
space to the left. You now have the correct
wording like this:

PRINT "ERROR"

Using INSerT and DELete Together

You can use the INSerT and DELete functions
together to fix incorrect characters. First, move
the cursor to the incorrect characters and press
the INST/DEL key by itself to delete the charac·
ters. Next, press the SH IFT key and the INSTI
DEL key together to add any necessary space.
Then type in the corrections. You can also type
directly on top of undesired characters, then use
INST to add any needed space.

The Control key is used with other keys 10 do
special tasks called control functions. To per·
form a control function, hold down the Control
key while you press some other key. Control
functions are often used in prepackaged soft­
ware such as a word processing system.

One control function that is used often is setting
the character and cursor color. To select a color,
hold down the CTRL key while you press anum·
ber key (1 through 8), on the top row of the key­
board. There are eight more colors available to
you; these can be selected with the (-.: key, as
explained later.

This is a dual function key. Under certain condi·
tions you can use the RUN function of this key
by pressing the SHIFT and RUN/STOP together.
It is also possible to use the STOP function of
this key to halt a program or a printout by press·
ing this key while the program is running. How·

25 USING e128 MODE-Getting Started In BASIC

Re.tore

CLRJHome

Commodore Key
(e'l

ever, in most prepackaged programs, the STOP
function of the RUNfSTOP key is intentionally
disabled (made unusable). This is done to pre­
vent the user from trying to stop a program that
is running before it reaches its normal end point.
If the user were able to stop the program, valu­
able data could be lost.

The RESTORE key is used with the RUNISTOP
key to return the computer to lis standard
condition.

Most prepackaged programs disable the
RESTORE key for the same reason they disable
the STOP function of the RUN/STOP key: to pre·
vent losing valuable data.

CLR stands for CLeaR. HOME refers to the
upper-left corner of the screen, which is called
the HOME position. It you press this key by itself
the cursor returns to the HOME position. When
you use the SHIFTkeywith the CLRIHOME key,
the screen CLeaRs and the cursor returns to the
HOME position.

The e, key (known as the COMMODORE key)
has a number of functions, including the follow­
ing ones:

1. The (I: key lets you switch back and forth
between the upper/lower-case character
set (which displays the letters and charac­
ters on the top of the keys), and the upper­
case/graphic display character set (which
displays capital letters and the graphics
symbols on the front face of the keys). To
switch modes, press the (I: key and the
SHIFT key at the same time.

2. The (I: key also lets you use a second set of
eight colors for the cursor. To get these col·
ors, you hold down the (I: key while you
press a number key (1 through 8) in the top
row.

26 USING C128 MODE-Get ling Started In BASIC

Function Keys

3. If you hold down the C' key while turning on
the computer, you can immediately access
C64mode.

The four keys located above the numeric keypad (marked Fl , F3, F5
and F7 on the top and F2, F4, F6 and F8 on the front) are called func­
tion keys. In both C128 and C64 modes, you can program the func­
tion keys. (See the KEY command descriptions in Section 5 of Chap·
ter It and in Chapter V, BASIC 7.0 ENCYCLOPEDIA). These keys are
also often used by prepackaged software to allow you to perform a
task with a single keystroke.

Displaying Graphic Characters

To display the graphic symbol on the right front face of a key, hold
down the SHIFT key while you press the key that has the graphic
character you want to print. You can display the right side graphic
characters only when the keyboard is in the upper-case/graphics
character set (one normal character set usually available at power·
up).

To display the graphic character on the left front face of a key. hold
down the C' key while you press the key that has the graphic charac·
ter you wan\. You can display the left graphic character while the
keyboard is in either character set.

Rules for Typing BASIC Language Programs

You can type and use BASIC language programs even without know­
ing BASIC. You must type carefully. however. because a typing error
may cause the computer to reject your information. The following
guidelines will help minimize errors when typing or copying a pro·
gram listing.

1. Spacing between words is not critical; e.g., typing
FORT = 1T010 is the same as typing FOR T= 1 TO 10. However,
a BASIC keyword itself must not be broken up by spaces. (See
the BASIC 7.0 Encyclopedia in Chapter V for a list of BASIC key·
words).

2. Any characters can be typed inside quotation marks. Some char·
acters have special functians when placed inside quotation
marks. These functions are explained laler in this Guide.

27 USING C128 MODE-Getting Started In BASIC

Getting Started­
The PRINT
Command

3. Be careful with punctuation marks. Commas, colons and semi­
colons also have special properties, explained later in this
section.

4. Always press the RETURN key (indicated in this Guide by
- BE-TORf[:" after completing a numbered line.

5. Never type more than 160 characters in a program line. Remem­
ber, this is the same as four full screen lines in 40-column formal,
or two full screen lines in SO-column format. See Section 8 for
more details on 40- and aD-column formats.

6. Distinguish clearly between the letter I and the numeral 1 and
between the letter 0 and the numeral IZI.

7. The computer ignores anything following the letters REM on a
program line. REM stands for REMark. You can use the REM
statement to put comments in your program that tell anyone list­
ing the program what is happening at a specific point.

Follow these guidelines when you type the examples and programs
shown in this section.

The PRINT command tells the computer to display information on the
screen. You can print both numbers and text (letters), but there are
special rules for each case, described in the following paragraphs.

Printing Numbers

To print numbers, use the PRINT command followed by the num­
ber(s) you want to print. Try typing this on your Commodore 128:

PRINT 5

Then press the RETURN key. Notice the number 5 is now displayed
on the screen.

Now type this and press RETURN:

PRINT 5,6

In this PRINT command, the comma tells the Commodore 128 that
you want to print more than one number. When the computer finds
commas in a string of numbers in a PRINT statement, each number
that follows a comma is printed 10 spaces to the right of the preced­
ing number. If you don't want all the extra spaces, use a semicolon (;)

28 USING C128 MODE-Gelling Slarled In BASIC

in your PRINT statement instead of a comma. The semicolon tells the
computer to place the numbers only three spaces apart. Type these
examples and see what happens:

PRINT 5;6 REDJ1!N

PRI NT 100;200;300;400;500 RETURN

Using the Question Mark to Abbreviate the PRINT
Command

You can use a question mark (?) as an abbreviation for the PRINT
command. Many of the examples in this section use the? symbol in
place of the word PRINT. In fact, most of the BASIC commands can
be abbreviated. The abbreviations for BASIC commands can be
found in Appendix K of this Guide.

Printing Text

Now that you know how to print numbers, it's time to learn how to
print text. It's actually very simple. Any words or characters you want
to display are typed on the screen, with a quote symbol at each end
of the string of characters. String is the BASIC name for any set of
characters surrounded by quotes. The quote character is obtained
by pressing SHIFT and the numeral 2 key on the top row 01 the key­
board (not the 2 in the numeric keypad). Try these examples:

? " COMMODORE 128" B..EJURN

? "4·5":...RE.IU.RN......

Notice that when you press RETURN, the computer displays the
characters within the quotes on the screen. Also note that the sec­
ond example did not calculate 4·5 since it was treated as a string
and not a mathematical calculation. If you want to calculate the
result 4 * 5, use the following command:

? 4'5 dIEIlJRK;

You can PRINT any string you want by using the PRINT command
and surrounding the printed characters with quotes. You can com­
bine text and calculations in a single PRINT command like this:

? "4·5 = "4·5 ~EIURN

29 USING C128 MODE-Getting Slarted In BASIC

30

See how the computer PRINTS the characters in Quotes, makes the
calculation and PRINTS the result . It doesn't matter whether the text
or calculation comes first. In fact. you can use both several times in
one PRINT command. Type Ihe following statement:

? 4*(2 + 3)" is the same as "4*5 RetURN

Notice that even spaces inside the quotation marks are printed on
the screen. Type:

?.. OVER HERE" RE~UR_N_

Printing In Different Color.

The Commodore 128 is capable of displaying 16different colors on
the screen. You can change colors easily. All you do is hold down the
CTRL key and press a numbered key between zero and eight on the
top row of the main keyboard. Notice that the cursor changes color
according to the numbered key you pressed. All the succeeding
characters are displayed in the color you selected. Hold down the
Commodore key and press a numbered key between zero and eight,
and eight additional colors are displayed on the screen.

Table 3-1 lists the colors available in C128 mode, for both 40- and
SO-column screen formats. The table also shows the key sequence
(CONTROL key plus number key, or C' key plus number key) used to
specify a given color.

Color Code Color Color Code
9

Color
1 Black Orange

Brown 2 White 10
3 Red 11 Light Red

Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

4 Cyan 12
5 Purple 13
6 Green 14
7 Blue 15
8 Yellow 16

Color Code
1
2
3
4
5
6
7
8

Color Numbers in 40-Column Format
Color Color Code Color

Black 9 Dark Purpte
White 10 Dark Yellow
Dark Red 11 Light Red
Light Cyan 12 Dark Cyan
Light Purple 13 Medium Gray
Dark Green 14 Light Green
Dark Blue 15 Light Blue
Light Yellow 16 Light Gray

Color Numbers in BO·Column Format

aeglnnlng to
Program

Using the Cursor Keys Inside Quotes with the PAINT
Command

When you type the cursor keys inside quotation marks, graphic char·
acters are shown on the screen to represent the keys. These charac·
ters will NOT be printed on the screen when you press RETURN. Try
typing a question mark (?), open quotes (SHIFTed 2 key); then press
either of the down cursor keys 10 times, enter the words " DOWN
HERE", and close the quotes. The line should look like this:

? ' QQQQQQQQQQ DOWN HERE"

Now press RETURN. The Commodore 128 prints 10 blank lines, and
on the eleventh line, it prints " DOWN HERE". As this example
shows, you can tell the computer to print anyv.lhere on your screen
by using the cursor control keys inside quotation marks.

So far most of the commands we have discussed have been per·
formed in DIRECT mode. That is, the command was executed as
soon as the RETURN key was pressed. However, most BASIC com·
mands and functions can also be used in programs.

What a Program I.

A program is just a set of numbered BASIC instructions that tells your
computer what you want it to do. These numbered instructions are
referred to as statements or lines.

Line Numbers

The lines of a program are numbered so that the computer knows in
what order you want them executed or RUN. The computer executes
the program lines in numerical order, unless the program instructs
otherwise. You can use any whole number from 0 to 63999 for a line
number. Never use a comma in a line number.

Many of the commands you have learned to use in DIRECT mode
can be easily made into program statements. For example, type this:

10? "COMMODORE 128" " RETURN

31 USING C128 MODE-Getting Started In BASIC

Notice the computer did not display COMMODORE 128 when you
pressed RETURN, as it would do if you were using the PRINT com·
mand in DIRECT mode. This is because the number, 10, that comes
before the PRINT symbol (?) tells the computer that you are entering
a BASIC program. The computer just stores the numbered statement
and waits for the next input from you.

Now type RUN and press RETURN. The computer prints the words
COMMODORE 128. This is not the same as using the PRINT com·
mand in DIRECT mode. What has happened here is that YOU HAVE
JUST WRITTEN AND RUN YOUR FIRST BASIC PROGRAM as small
as it may seem. The program is still in the computer's memory, so
you can run it as many times as you want.

Viewing Your Program-The LIST Command

Your one·line program is still in the C128 memory. Now clear the
screen by pressing the SHIFT and CLR/HOME keys together. The
screen is empty. At this point you may want to see the program list·
ing to be sure it is still in memory. The BASIC language is equipped
with a command that lets you do just this-the LIST command.

Type LIST and press RETURN. The C128 responds with:

10 PRINT " COMMODORE 126"

READY.

Anytime you want to see all the lines in your program, type LIST This
is especially helpful if you make changes, because you can check to
be sure the new lines have been registered in the computer's memo
ory. In response to the command, the computer displays the
changed version of the line, lines, or program. Here are the rules for
using the LIST command.

-To see line N only, type LIST N and press RETURN. Substitute
N for the line number you wish to see.

- To see from line N to the end of the program, type LIST N· and
press RETURN.

-To see the lines from the beginning of the program to line N,
type LlST-N and press RETURN .

-To see from line Nl to line N2 inclusive, type LIST Nl·N2 and
press RETURN.

32 USING C128 MODE-Getting Started In BASIC

-

-

A Simple Loop-The GOTO Statement

The line numbers in a program have another purpose besides put­
ting your commands in the proper order for the computer. They
serve as a reference for the computer in case you want to execute
the command in that line repetitively in your program. You use the
Gala command to tell the compu ter to go to a line and execute the
command(s) in it. Now type:

20 GOTO 10

When you press RETURN after typing line 20, you add it to your pro­
gram in the computer's memory.

Notice that we numbered the first line 10 and the second line 20.11 is
very helpful to number program lines in increments of 10 (that is, 10,
20, 30, 40, etc.) in case you want to go back and add lines in
between later on. You can number such added lines by fives (15, 25
. . .) ones (1 , 2 . ..)- in fact , by any whole number- to keep the lines
in the proper order. (See the RENUMBER and AUTO commands in
the BASIC Encyclopedia.)

Type RUN and press RETURN, and watch the words COMMODORE
128 move down your screen. To stop the message from printing on
the screen, press the RUN/STOP key on the left side of your
keyboard.

The two lines that you have typed make up a simple program that
repeats itself endlessly, because the second line keeps referring the
computer back to the first line. The program will continue indefinitely
unless you stop it or turn off the computer.

Now type LIST - REJ_URIC The screen should say:

10 PRtNT " COMMODORE 128"
20 GOTO 10
READY.

Your program is still in memory. You can RUN it again if you want to.
This is an important difference between PROGRAM mode and
DIRECT mode. Once a command is executed in DIRECT mode, it is
no longer in the computer's memory. Notice that even though you
used the? symbol for the PRINT statement, your computer has con­
verted it into the full command. This happens when you LIST any
command you have abbreviated in a program.

33 USING C128 MODE-Gett ing Started in BASIC

Clearing the Computer's Memory-The NEW Command

Anytime you want to start all over again or erase a BASIC program in
the computer's memory, just type NEW and press RETURN. This
command clears out the computer 's BASIC memory, the area where
programs are stored.

Using Color in a Program

To select color within a program, you must include the color selec­
tion information within a PRINT statement. For example, clear your
computer 's memory by typing NEW and pressing RETURN, then
type the following, being sure to leave space between each letter:

10 PAINT " S PEe TAU M" '-BEI\.!8R:

Now Iype line 10 again but this time hold down the CTRL key and
press the 1 key directly after entering the first set of quote marks.
Release the CTRL key and type the "S". Now hold down the CTRL
again and press the 2 key. Release the CTRL key and type the " P".
Next hold down the CTRL again and press the 3 key. Continue this
process until you have typed all the letters in the word SPECTRUM
and selected a color between each letter. Press the SHIFT and the 2
keys to type a set of closing quotation marks and press the RETURN
key. Now type RUN and press Ihe RETURN key. The computer dis­
plays the word SPECTRUM with each letter in a different color. Now
type LIST and press the RETURN key. Notice the graphic characters
that appear in the PRINT statement in line 10. These characters tell
the computer what color you want for each printed letter. Note that
these graphic characters do not appear when the Commodore 128
PRINTs the word SPECTRUM in different colors.

The color selection characters, known as control characters, in the
PRINT statement in line 10 ten the Commodore 128 to change col­
ors. The computer then prints the characters that follow in the new
color unti l another color selection character is encountered. While
characters enclosed in quotation marks are usually PRINTed exactly
as they appear, control characters are only displayed within a pro­
gram LiSTing.

34 USING C128 MODE-Gett ing Started In BASIC

Editing Your
Program

The following paragraphs will help you to type in your programs and
make corrections and additions to them.

Erasing a Line from a Program

Use the LIST command to display the program you typed previously_
Now type 10 and press RETURN. You just erased tine 10 from the
program. LIST your program and see for yourself. 1f the old line 10 is
still on the screen, move the cursor up so thaI it is blinking anywhere
on that line. Now. if you press RETURN, line 10 is back in the comput·
er'S memory.

Duplicating a Line

Hold down the SHIFT key and press the CLR/HOME key on the upper
right side of your keyboard, This will clear your screen. Now LIST
your program. Move the cursor up again so that it is blinking on the
"0" in the line numbered 10. Now type a 5 and press RETURN. You
have just duplicated (Le., copied) line 10. The duplicate line is num­
bered 15. Type LIST and press RETURN to see the program with the
duplicated lines.

Replacing a Line

You can replace a whole line by typing in the old line number fol­
lowed by the text of the new line, then pressing RETURN. The old
version of the line will be erased from memory and replaced by the
new line as soon as you press RETURN.

Changing a Line

Suppose you want to add something in the middle of a line. Simply
move the cursor to the character or space that immediately follows
the spot where you want to insert the new material. Then hold down
the SHIFT key and the INSTIDEL key together until there is enough
space to insert your new characters.

Try this example. Clear the computer's memory by typing NEW and
pressing RETURN. Then type:

10 ? " MY 128 IS GREAT" R~ET([RN

35 USING C128 MODE-Gellino Started in BASIC

Mathematical
Operations

Let's say that you want to add the word COMMODORE in front of the
number 128. Just move the cursor so that it is blinking on the" 1 " in
128. Hold down the SHIFT and INST/DEL keys until you have enough
room to type in COMMODORE (don't forget to leave enough room for
a space after the E). Then type in the word COMMODORE.

If you want to delete something in a line (including exIra blank
spaces), move the cursor to the character following the material you
want to remove. Then hold down the INSTfDEL key by itself. The cur­
sor wi ll move to the left, and characters or spaces will be deleted as
long as you hold down the INST/DEL key.

You can use the PRINT command to perform calculations like addi­
tion, subtraction, multiplication, diviSion and exponentiation. You
type the calculation after the PRINT command.

Addition and Subtraction

Try typing these examples:

PRINT 6 + 4 ;A£I!J1i!'L

PRINT 50 - 20 RETU!\!'!

PRINT 10 + 15 - 5 RETURN

PRINT 75 - 100 R£I!JRN

PRINT 30 + 4ll,55 - 25 -'!t11J1It!
PRINT 30 + 4ll;55 - 25 RETURN_

Notice that the fourth calcu lation (75-100) resulted in a negative
number. Also notice that you can tell the computer to make more
than one calculation with a single PRINT command. You can use
either a comma or a semicolon in your command, depending on
whether or not you want your results printed 10 spaces apart or
three spaces apart.

Multiplication and Division

Find the asterisk key (*) on the right side of your keyboard. This is the
symbol that the Commodore 128 uses for multiplication. The slash (I)
key, located next to the right SHIFT key, is used for division.

36 USING ell8 MOOE-GelUng Slarted In BASIC

-

Try I hese examples:

PRINT S'3 ~R"ETU-R"-N'

PRINT 10012 ~Ul!llli

Exponentiation

Exponentiation means to raise a number to a power. The up arrow
key (1), localed next to the asterisk on your keyboard , is used for
exponentiation. If you want to raise a number to a power. use the
PRINT command. followed by the number, the up arrow and the
power. in that order. For example, to find out what 3 squared is, type:

PRINT 312 RETl!Illi

Order of Operations

You have seen how you can combine addition and subtraction in the
same PRINT command. If you combine multiplication or division with
addition or subtraction operations, you may not get the result you
expect. For example, type:

PRINT 4 + 6J2 RETURN

If you assumed you were dividing 10 by 2. you were probably sur­
prised when the computer responded with the answer 7. The reason
you got this answer is that multiplication and division operations are
performed by the computer before addition or subtraction. Multipli­
cation and division are said to take precedence over addition and
subtraction. It doesn't matter in what order you type the operation. In
computing, the order in which mathematical operations are per­
formed is known as the order of operations.

Exponentiation, or raising a number to a power, takes precedence
over the other four mathematical operations. For example, if you
type:

PRINT 161412 R.ETURN

the Commodore t 28 responds with a 1 because it squares the 4
before it divides 16.

37 USING C128 MODE-Getting Started in BASIC

Constants,
Varlabl.s and
Strings

Using Parentheses to Define the Order of Operations

You can tell the Commodore 128 which mathematical operation you
want performed first by enclosing that operation in parentheses in
the PR INT command. For instance, in the first example above, if you
want to tell the computer to add before dividing, type:

PRINT (4 + SY2 oAl;Il.I:BtC

This gives you the desired answer, 5.

If you want the computer to divide before squaring in the second
example, type:

PRINT (1614)12 :JiEI U!!tL

Now you have the expected answer, 16.

If you don' t use parentheses, the computer performs the calcu la­
tions according to the above rules. When aU operations in a calcula­
tion have equal precedence, they are performed from lef t to right.
For example, type:

PRINT 4'5110 ' S RETUBtL

Since the operations in this example are performed in order from left
to right, the result is 12 (4 '5 = 20 ... 20110 = 2 ... 2'6 = 12). If you
want to divide 4 *5 by 10*6 you type:

PRINl (4'5Y(10' S) illE'NlItt:

The answer is now .333333333.

Constants

Constants are numeric values that are permanent that is, they do
not change in value over the course of an equation or program. For
example, the number 3 is a constant, as is any number. This state­
ment illustrates how your computer uses constants:

10 PRINT 3

No matter how many times you execute this line, the answer will
always be 3.

38 USING C128 MODE-Gett ing Started In BASIC

Variables

Variables are values that can change over the course of an equation
or program statement. There is a part of the computer's BASIC memo
ory that is reserved for the characters (numbers, letters and sym­
bols) you use in your program. Think of this memory as a number of
storage compartments in the computer that store information about
your program: this part of the computer 's memory is referred to as
variable storage. Type in this program:

10 X= 5
20 ?X

Now RUN the program and see how the computer prints a 5 on your
screen. You told the computer in line 10 that the letter X will repre­
sent the number 5 for the remainder of the program. The letter X is
called a variable, because the value of X varies depending on the
value to the right of the equals sign_ We call this an assignment state­
ment because now there is a storage compartment labeled X in the
computer's memory, and the number 5 has been assigned to it. The
= sign tells the computer that whatever comes to the right of it will
be assigned to a storage compartment (a memory location) labeled
with the letter X to the left of the equals sign.

The variable name on the left side of the = sign can be either one or
two letters, or one letter and one number (the letter MUST come
first). The names can be longer, but the computer only looks at the
first two characters. This means the names PA and PART would refer
to the same storage compartment. Also, the words used for BASIC
commands (LOAD, RUN, LIST, etc.) or functions (INT, ABS, SQR, etc.)
cannot be used as names in your programs. Refer to the BASIC
Encyclopedia in Chapter 5 if you have any questions about whether a
variable name is a BASIC keyword. Notice that the = in assignment
statements is not the same as the mathematical symbol meaning
" equals" , but rather means allocate a variable (storage compart­
ment) and assign a value to it.

In the sample program you just typed, the value of the variable X
remains at 5 throughout. You can put calcu lations to the right of the
= sign to assign the result to a variable. You can mix text wi th con­
stants in a PRINT statement to identify them. Type NEW and press
RETURN to clear the Commodore 128's memory; then try this
program:

10A = 3·100
20 B= 3·2OO
30 ?"A IS EaUAL TO "A
40 ?" B tS EQUAL TO "B

39 USING C128 MODE-Gett ing Started in BASIC

Now there are two variables , labeled A and B, in the computer's
memory, containing the numbers 300 and 600 respectively. H, later in
the program, you want to change the value of a variable, just put
another assignment statement in the program. Add these lines to the
program above and RUN it again.

50 A = 900"30/10
60 B = 95 + 32 + 128
70 GOTO 30

You ' ll have to press the STOP key to halt the program.

Now LIST the program and trace the steps taken by the compu ter.
First, it assigns the value to the right of the = sign in line 10 to the
letter A. It does the same thing in line 20 for the letter B. Next, it
prints the messages in lines 30 and 40 that give you the values of A
and B. Finally, it assigns new values to A and B in lines 50 and 60.
The old values are replaced and cannot be recovered unless the
computer executes lines 10 and 20 again. When the computer is
sent to line 30 to begin printing the values of A and B again, it prints
the new values calculated in lines 50 and 60. Lines 50 and 60 reas,
sign the same values to A and B and line 70 sends the computer
back to line 30. This is called an endless loop, because lines 30
through 70 are executed over and over again until you press the
RUN/STOP key to halt the program. Other methods of looping are
discussed later in this and the following two chapters.

Strings

A string is a character or group of characters enclosed in quotes.
These characters are stored in the computer's memory as a variable
in much the same way numeric variables are stored. You can also
use variable names to represent strings, just as you use them to rep­
resent numbers. When you put the dollar sign ($) after the string vari­
able name, it tells the computer that the name is for a string variable,
and not a numeric variable .

Type NEW and press RETURN to clear your computer's memory,
then type in the program below:

10 A$ = " COMMODORE ..
20X = 128
30 B$ = " COMPUTER"
40 Y= 1
50 ? "THE "AS;X; BS" IS NUMBER "Y

40 USING C128 MODE-Getting Started in BASIC

Sample Program

Storing and
Reusing Your
Program

41

See how you can print numeric and string variables in the same
statement? Try experimenting with variables in your own short
programs.

You can print the value of a variable in DIRECT mode, after the pro­
gram has been RUN. Type ?A$;8$;X;Y after running the program
above and see that those three variable values are still in the com­
puter's memory.

If you want to clear this area of BASIC memory but still leave your
program intact, use the CLR command. Just type CLR < RETURN)
and all constants, variables and strings are erased. But when you
type LIST, you can see the program is still in memory. The NEW com­
mand discussed earlier erases both the program and the variables.

Here is a sample program incorporating many of the techniques and
commands discussed in this section.

This program calculates the average of three numbers (X, Y and Z)
and prints their values and their averages on the screen. You can
edit the program and change the calculations in line 10 through 30 to
change the values of the variables. line 40 adds the variables and
divides by 3 to get the average. Note the use of parentheses to tell
the computer to add the numbers before it divides.

TIP: Whenever you are using more than one set of parentheses
in a statement, it's a good idea to count the number of left
parentheses and right parentheses to make sure they are
equal.

10X = 46
20Y = 72
3OZ = 114
40 A = (X + Y+ Z)l3
50
60 ?"THE AVERAGE OF" X;Y;"AND " Z;"IS"A;
70 GOTO 90
90 END

Once you have created your program, you will probably want to store
it permanently so you will be able to recall and use it at some later
time. To do this, you 'll need either a Commodore disk drive or the
Commodore 1530 Oatassette.

USING e12S MODE-Gatling Startad in BASIC

You will learn several commands that let you communicate between
your computer and your disk drive or Datassette. These commands
are constructed with the use of a command word followed by several
parameters. Parameters are letters, words or symbols in a command
that supply specific information to the computer. such as a filename,
or a numeric variable that specifies a device number. Each com­
mand may have several parameters. For example, the parameters of
the disk format command include a name for the disk and an identify­
ing number or code, plus several other parameters. Parameters are
used in almost every BASIC command; some are variables which
change and others are constant. These are the parameters that sup­
ply disk information to the C128 and disk drive:

Disk Handling Parameters

disk name- arbitrary 16 character identifying name
you supply.

file name- arbitrary 16 character identifying name
you supply.

i.d. number- arbitrary two·character identifying
number you supply

drive number- must use 0 for a single disk drive, 0 or 1
in a dual drive.

device number- a preassigned number for a peripheral
device. For example. the device num·
ber for a Commodore disk drive is 8.

Formatting a Disk-The HEADER Command

To store programs on a new (or blank) disk. you must first prepare the
disk to receive data. This is called " formatting" the disk. NOTE:
Make sure you turn on the disk drive before inserting any disk.

The formatting process divides the disk into sections called tracks
and sectors. A table of contents, called a directory. is created. Each
time you store a program on disk, the name you assign to that pro­
gram will be added to the directory.

The Commodore 128 has two kinds of formatting commands. One
can be used only in C128 mode. and one can be used in both C64
and C128 mode. The fo11owing paragraphs describe C128 mode
format commands here. See Chapter ilion C64 mode for more infor­
mation about C64 programming and disk handling.

42 USING C128 MODE-Getting Started In BASIC

-

-

The command that formats a diskette is called the HEADER com·
mand. It has a long form and a short form. To formal a blank (new)
diSk, you MUST use the long form as follows:

HEADER "diskname" , Ld.[,Ddrive number] (,[ON]U device number]

Afler the word HEADER, you type a name of your choice for the disk,
within quotes. You can choose any name with up to 16 characters.
You should choose disk names that help you identify what will be
stored on the disk.

Follow the diskname with a comma and the letter " I ", Now a two
character Ld ., followed by a comma. Your disk Ld. does not have to
be numbers; you can also choose letters. You may want to develop a
consecutive coding system for your disks, such as A 1, A2, 81 , B2.

If you have one single disk drive, just press RETURN at this point
since the Commodore 128 automatically assumes the drive number
is 0 and the device number is 8. You can specify these parameters if
you have more than one drive or a dual drive.

The next parameter in the command selects the drive number. Press
the " 0 " key and if you have a single disk drive, press the zero key
followed by a comma. Dual drives are labeled 0 and 1. The device
number parameter starts with the letter U so press the "U" key fol­
lowed by the preassigned device number for a Commodore disk
drive which is 8.

Here is an example of the long form of the HEADER command:

HEADER" RECS",[A1,DO,U8 I\ETU~R!{j

This command formats the diskette, calling the directory RECS, the
i.d. number A1 , on drive 0, unit 8.

The default values for disk drive (0) and device number (8) will be
used if none are supplied. This is an acceptable long form of the
HEADER command:

HEADER " MY DISK", [23 R~RN -

The HEADER command can also be used to erase all data from a
used disk, so the disk can be reused as if it were a brand new disk.
Be careful that you don't erase a disk that contains data you may
want someday.

43 USING C128 MODE-Getting Slar led in BASIC

The quick form of the HEADER command can be used if the disk
was previously formatted with the long form of the HEADER com­
mand.

The quick form clears the directory, erasing ali data in the same way
as the long form, but keeps the same i.d. as was previously used.
Here is what the quick HEADER might look like:

HEADER " NEWPRDGS" 8El.U8N

SAVElng on Disk

In C128 mode, you can store your program on disk by using either of
the following commands:

DSAVE" PROGRAM NAME" RETU-RN
SAVE" PROGRAM NAME",8

Either command can be used. Remember that the character
sequence "DSAVE" can be displayed on the screen by pressing the
function key labeled F5, or you can type the sequence yourself. The
program name can be any name you choose. up to 16 characters
long. Be sure to enclose the program name in quotes. You cannot
put two programs with the same name on the same disk. If you do,
the second program will not be accepted; the disk will retain the first
one. In the second example, the 8 indicates that you are saving your
program on device number 8. You do not need the 8 with DSAVE,
because the computer automatically assumes you are using device
number 8.

SAVElng on Cassette

If you are using a Datassette to store your program, insert a blank
tape in the recorder, rewind the tape if necessary, and type:

SAVE " PROGRAM NAME" RETURN

You must type the word SAVE, followed by the program name. The
program name can be any name you choose up to 16 characters.

NOTE: The screen will go blank while the program is being
SAVEd. but returns to normal when the process is completed.

Unlike disk, you can save two programs to tape under the same
name. However when you load it back into the computer, the first
program seQuenlially on the tape will be loaded, so avoid giving pro­
grams the same name.

44 USING C128 MODE-Getting Started in BASIC

Once a program has been SAVEd, you can LOAD it back into the
computer 's memory and RUN it anytime you wish,

LOADing from Disk

Loading a program simply copies the contents of the program from
the disk into the computer's memory. If a BASIC program was
already in memory before you issued the LOAD command. it is
erased.

To load your BASIC program from a disk, use ei ther of the following
commands in C128 mode:

DLOAD"PROGRAM NAME" - BEJlJBNl
LOAD" PROGRAM NAME" ,8 REilI~

Remember, in C128 mode you can use the F2 function key (which
you activate by pressing SHIFT and Fl) to display the sequence
DLOAD", or you can type the letters yourself. In the second exam­
ple, the 8 indicates to the computer that you are loading from device
number 8. Again, like DSAVE, DLOAD assumes the disk-drive device
number is 8. Be careful to type the program name exactty as you
typed it when SAVEing the program, or the computer will respond
"FILE NOT FOUND."

Once the program is loaded, type RUN to execute. The Commodore
128 has a special form of the RUN command used to LOAD and
RUN the program in C128 mode with one command. Type RUN, fol­
lowed by the name of the program (also known as the filename) in
quotes:

RUN" MYPROG" REJ'URN '

LOADing from Cassette

To LOAD your program from cassette tape, type:

LOAD " PROGRAM NAME" JlEIU.BJ'L:

If you do not know the name of the program. you can type:

LOAD RETURN

and the next program on the tape will be found. While the Datassette
is searching for the program the screen is blank. When the program
is found, the screen displays

FOUND PROGRAM NAME

45 USING C128 MODE-Getting Started in BASIC

To actually load the program, you then press the Commodore key.

You can use the counter on the Datassette to identify the starting
position of the programs. Then, when you want to retrieve a pro­
gram, simply wind the tape forward from 000 to the program's start
location, and type:

LOAD J!EIU1Il'L

In this case you don't have to specify the PROGRAM NAME; your
program will load automatically because it is the next program on
the tape.

Other Dlsk·Aelated Commands

Verifying a
Program

To verify that a program has been correctly
saved, use the following command in C128
mode.

DVERtFY" PROGRAM NAME" ;J!EJl.I.BtI..;

If the program in the computer is identical to the
one on the disk, the screen display will respond
with the letters "OK."

The VERIFY command also works for tape pro­
grams. You type:

VERtFY" PROGRAM NAME" RETU.RtC

You do not enter the comma and a device
number.

Displaying Your In C128 mode, you can see a list or directory of
Disk Directory the programs on your disk by using the following

command:

DtRECTORY RETURtL

This lists the contents of the directory. The easy
way is to press the F3 function key. When you
press F3, the C128 displays the word "DIREC·
TORY" and performs the command.

46 USING C128 MODE-Getting Started in BASIC

For further information on SAVEing and LOAD­
ing your programs, or other disk related informa­
tion, refer to your Datassette or disk drive man­
ual. Also consul t the LOAD and SAVE command
descriptions In the Chapter V, BAStC 7.0
Encyclopedia .

. ~.* • • * * • • •••••••••• • ••• • *

You now know something about the BASIC language and some ele­
mentary programming concepts. The next section builds on these
concepts, introducing additional commands, functions and tech­
niques that you can use to program in BASIC.

47 USING C128 MODE-Gelling Sl afleclln BASIC

'--

SECTION 4 COMPUTER DECISIONS-The IF·THEN Statement 51
Advanced BASIC Using the Colon 52
Programming

LOOPS-The FOR·NEXT Command 53
Empty loops-Inserting Delays in 8 Program 54
The STEP Command 54

INPUTTING DATA 55
The INPUT Command 55

Assigning a Value to a Variable 55
Prompt Messages 56

The GET Command 57
Sample Program 58
The READ· DATA Command 59
The RESTORE Command 60
Using Arrays 61

Subscripted Variables 61
Dimensioning Arrays 62
Sample Program 63

PROGRAMMING SUBROUTINES 64
The GOSUB·RETURN Command 64
The ON GOTOIGOSUB Command 65

USING MEMORY LOCATIONS 65
Using PEEK and POKE for RAM Access 65

Using PEEK 66
Using POKE 66

BASIC FUNCTIONS 67
What Is a Function? 67
The INTEGER Function (INT) 67
Generating Random Numbers-The RND Function 68
The ASC and CHR$ Commands 69
Converting Strings and Numbers 69

The VAL Function 70
The STRS Function 70

The Square Root Function (SOR) 70
The Absolute Value Function (ABS) 70

THE STOP AND CONT (CONTINUE) COMMANDS 70

49 USING C12B MODE-Advanced BASIC Programming

-

Computer
Decl.lon.­
TheIF.THEN
Statement

This section describes how to use a number of powerful BASIC com·
mands, functions and programming techniques that can be used in
both C128 and C64 modes.

These commands and functions allow you to program repeated
actions through looping and nesting techniques: handle tables of
values: branch or jump to another section of a program. and return
from that section; assign varying values to a quantity-and more.
Examples and sample programs show just how these BASIC con·
cepts work and interact.

Now that you know how to change the values of variables, the next
step is to have the computer make decisions based on these
updated values. You do this with the IF·THEN statement. You tell the
computer to execute a command only IF a condition is true (e.g., IF
X = 5). The command you want the computer to execute when the
condition is true comes after the word THEN in the statement. Clear
your computer's memory by typing NEW and pressing RETURN ,
then type this program:

10 J = O
2O? J,"COMMODORE 128"
30 J = J + 1
40 IF J = 5 THEN GOTO 60
50 GOTO 20
60 END

You no longer have to press the STOP key to break out of a looping
program. The IF·THEN statement tells the computer to keep printing
"COMMODORE 128" and incrementing (increasing) J until J = 5 is
true. When an IF condition is false, the computer jumps to the next
line of the program, no matter what comes after the word THEN.

Notice the END command in line 60. It is good practice to put an
END statement as the last line of your program. It tells the computer
where to stop executing statements.

51 USING C128 MODE-AdvanCed BASIC Programming

Below is a list of comparison symbols that may be used in the IF
statement and their meanings:

SYMBOL

=
)
(

o
) =
(=

MEANING

EQUALS
GREATER THAN
LESS THAN
NOT EQUAL TO
GREATER THAN OR EQUAL TO
LESS THAN OR EQUAL TO

You should be aware that these comparisions work in expected
mathematical ways with numbers. There are different ways to deter­
mine if one string is greater than, less than, or equal to another. You
can learn about these "string handling" functions by referring to
Chapter V, BASIC 7.0 Encyclopedia.

Section 5 describes some powerful extensions of the IF-THEN con­
cept, consisting of BASIC 7.0 commands like BEGIN, BEND, and
ELSE.

Using the Colon

A very useful tool in programming is the colon (:). You can use the
colon to separate two (or more) BASIC commands on the same line.

Statements after a colon on a line will be executed in order, from left
to right. In one program line you can put as many statements as you
can fit into 160 characters, including the line number. This is equiva­
tent to four full screen tines in 40-column format, and two full lines in
BO-column format. This provides an excellent opportunity to take
advantage of the THEN part of the IF-THEN statment. You can tell
the computer to execute several commands when your IF condition
is true. Clear the computer's memory and type in the following
program:

10 N = l
20 IF N(5 THEN PRINT N;" LESS THAN 5" :GOTO 10
30 ? N; " GREATER THAN OR EQUAL TO 5"
40 END

52 USING C128 MODE-Advanced BASIC Programming

Loops-The
FOR. NEXT
Command

53

Now change line 10 to read N = 20, and RUN the program again.
Notice you can tell the computer to execute more than one state­
ment when N is less than 5. You can put any statement(s) you want
after the THEN command. Remember that the GOTO 10will not be
reached until N(S is true. Any command that should be followed
whether or not the specified condition Is met should appear on a
separate line.

In the program used for the IF·THEN example, we made the com·
puter print Commodore five times by telling it to increase or "incre­
ment" the variable J by units of one, until the value of J equalled five;
then we ended the program. There is a simpler way to do this in
BASIC. We can use a FOR-NEXT loop, like this:

10 FOR J = l TO 5
20 ? "Commodore"
30 NEXT J
4ll END

Type and RUN this program and compare the result wi th the result of
the IF-THEN program-they are the same. In fact, the steps taken by
the computer are almost identical for the two programs. The FOR­
NEXT loop is a very powerful programming tool. You can specify the
number of times the computer should repeat an action. Let's trace
the computer's steps for the program above.

First, the computer assigns a value of 1 to the variable J_ The 5 in the
FOR statement in line 10 tells the computer to execute aU statements
between the FOR statement and the NEXT statement, until J is equal
to 5. In this case there is just one statement-the PRINT statement.

After the computer assigns a value of 1 to J, it compares 1 to 5 to
see jf J = 5 is true-in much the same way as the IF·THEN statement
does. Since J = 5 is not true yet, the computer continues with the
program by executing the PRINT statement. The computer then
goes to the NEXT J statement, which says to go back to the FOR
statement The FOR statement teUs the computer to increment J,
called a counter variable, by 1: compare J to 5: then continue if J = S
is still false. After five executions of this loop. J will equalS. At this
point. the computer drops down to the statement that comes imme­
diately after the NEXT statement and continues from there. In this
case the following statement is the END command. so the program
stops running.

USING C128 MODE-Advanced BASIC ProgrammIng

Empty Loops-Inserting Delays In a Program

Before you proceed any further, it will be helpful to understand about
loops and some ways they are used to get the computer to do what
you want. You can use a loop to slow down the computer (by now
you have witnessed the speed with which the computer executes
commands). See if you can predict what this program will do before
you run it.

10 A$ = "COMMODORE C12S"
20 FOR J = l TO 20
30 PRINT
40 FOR K= l TO 1500
50 NEXT K
60 PRINT A$
70 NEXT J
SO END

Did you get what you expected? The loop contained in lines 40 and
50 tells the computer to count to 1500 before executing the remain­
der of the program. This is known as a delay loop and is often useful.
Because it is inside the main loop of the program, it is called a
nested loop. Nested loops can be very useful when you want the
computer to perform a number of tasks in a given order, and repeat
the entire sequence of commands a certain number of times.

Section 5 describes an advanced way to insert delays through use
of the new BASIC 7.0 command, SLEEP.

The STEP Command

You can tell the computer to increment your counter by units (e.g. 10,
0.5 or any other number). You do this by using a STEP command with
the FOR statement. For example, if you want the computer to count
by tens to 100, type:

10 FOR X= O TO 100 STEP 10
20? X
30 NEXT

Notice that you do not need the X in the NEXT statement if you are
only executing one loop at a time-this is discussed later in this sec·
tion. Also, note that you do not have to increase (or "increment ")
your counter-you can decrease (or "decrement") it as well. For
example, change line 10 in the program above to read:

10 FOR X= loo TO 0 STEP - l0

54 USING C128 MODE-Advanced BASIC Programming

Inputting Data

The computer will count backward from 100 to 0, in uni ts of 10.

If you don't use a STEP command with a FOR statement, the com­
puter will automatically increment the counter by units of 1.

The parts of the FOR-NEXT command are:
FOR - word used to indicate beginning of loop

X - counter variable: any number variable can be used
1 - starting value; may be any number. positive or nega­

tive
TO - connects starting value to ending value

100 - ending value; may be any number, positive or negative
STEP - indicates an increment other than 1 will be used

2 - increment; can be any number positive or negative

The INPUT Command

Assigning a
Value to a
Variable

Clear the computer's memory by typing NEW
and pressing RETURN, and then type and RUN
this program.

10 K = 10
20 FOR t = 1 TO K
30 ? "Commodore"
40 NEXT

In this program you can change the value of K in
line 10 to make the computer execute the loop
as many times as you want it to. You have to do
this when you are typing the program, before it
is RUN. What if you wanted to be able to tell the
computer how many times to execute the loop
at the time the program is RUN?

In other words, you want to be able to change
the value of the variable K each time you run the
program, withou t having to change the program
itself. We call this the ability to interact with the
computer. You can have the computer ask you
how many times you want it to execute the loop.
To do this, use the INPUT command. For exam­
ple, replace line 10 in the program wi th:

10 tNPUT K

55 USING C128 MODE-Advanced BASIC Programming

Prompt
M •••• g ••

Now when you RUN the program. the compu ter
responds with a ? to let you know it is waiting for
you to enter what you want the value 01 K to be.
Type 15 and press RETURN. The compuler will
execute the loop 15 times.

You can also make the computer print a mes­
sage in an INPUT statement to tell you what
variable it's waiting for. Replace line 10 wi th:

10 INPUT" PLEASE ENTER A VALUE FOR
K" ;K

Remember to enclose the message to be
printed in quotes. This message is called a
prompt. Also. notice that you must use a semi­
colon between the ending quote marks of the
prompt and the K. You may put any message
you want in the prompt, but the INPUT state­
ment must fit on two screen lines, just as any
BASIC command must.

The INPUT statement can also be used with
string variables. The same rules that apply for
numeric variables apply for strings. Don't forget
to use the $ to identify all your string variables.
Clear your computer's memory by typing
NEW and pressing RETURN. Then type in this
program.

10 INPUT" WHAT IS YOUR NAME" ;N$
2O? " HELLO ",NS

Now RUN the program. When the computer
prompts " WHAT IS YOUR NAME?". type your
name. Don 't forget to press RETURN after you
type your name.

Once the value of a variable (numeric or st ring)
has been inserted into a program th rough the
use of INPUT, you can refer to it by its variable
name any time in the program. Type ?N$
(RETURN)- your computer remembers your
name.

56 USING C128 MODE-Advanced BASIC Programming

The GET Command

There are other BASIC commands you can use in your program to
interact with the computer. One is the GET command and is similar
to INPUT. To see how the GET command works, clear the computer's
memory and type this program.

10 GET AS
20 IF AS ="" THEN GOTO 10
30? AS
40 END

When you type RUN and press RETURN, nothing seems to happen.
The reason is that the computer is waiting for you to press a key. The
GET command, in effect, tells the computer to check the keyboard
and find out what character or key is being pressed. The computer is
satisfied with a null character (that is, no character). This is the rea·
son for line 20. This line tells the computer that if it gets a null charac­
ter, indicated by the two double quotes with no space between them,
it should go back to line 10 and try to GET another character. This
loop continues until you press a key. The computer then assigns the
character on that key to A$.

The GET command is very important because you can use it , in
effect, to program a key on your keyboard. The example below prints
a message on the screen when Q is pressed. Type the program and
RUN it. Then press Q and see what happens.

10 ?" PRESS Q TO VIEW MESSAGE"
20 GET AS
30 IF AS ="" THEN GOTO 20
40 IF AS = "Q" THEN GOTO 60
50 GOTO 20
60 FOR 1= 1 TO 25
70? " NOW I CAN USE THE GET STATEMENT"
80 NEXT
90 END

Notice that if you try to press any key other than the Q, the computer
will not display the message, but will go back to line 20 to GET
another character.

Section 5 describes how to use the DO/LOOP and GETKEY slate­
ments, which are new and more powerful BASIC 7.0 commands that
can be used to perform a similar task.

57 USING C128 MODE-Advanced BASIC Programming

Sample Program

Now that you know how to use the FOR·NEXT loop and the tNPUT
command, clear the computer's memory by typing NEW
RETURN , then type the following program:

10 T = O
20 INPUT" HOW MANY NUMBERS" ;N
30 FOR J = l TO N
40 INPUT" PLEASE ENTER A NUMBER ";X
5OT = T + X
6() NEXT
70 A = TIN
80 PRINT
90 ? " YOU HAVE";N" NUMBERS TOTALlNG" ;T
1oo ? "AVERAGE = ";A
110 END

This program lets you tell the computer how many numbers you want
to average. You can change the numbers every time you run the
program without having to change the program itself.

Let's see what the program does. line by line:

Une 10 assigns a value of a to T (which will be the running total
of the numbers).

Line 20 lets you determine how many numbers to average,
stored in variable N.

Une 30 tells the computer to execute a loop N times.

Une 40 lets you type in the actual numbers to be averaged.

Une 50 adds each number to the running total .

Une 60 tells the computer to go back to line 30, increment the
counter (J) and start the loop again.

Line 70 divides the total by the amount of numbers you typed
(N) after Ihe loop has been executed N limes.

Une 80 prints a blank line on the screen.

Une 90 prints the message that gives you the amount of num·
bers and their total .

Line 100 prints the average of the numbers.

Une 110 tells the computer that your program is finished.

58 USING C128 MODE-Advanced BASIC Programming

-

The READ·DATA Command

There is another powerful way to tell the computer what numbers or
characters to use in your program. You can use the READ statement
in your program to tell the computer to get a number or characler(s)
from the DATA slatement. For example, if you want the compuler 10
find the average of five numbers, you can use the READ and DATA
statements this way:

10 T = O
20 FOR J = 1 TO 5
30 READ X
4OT = T + X
50 NEXT
6OA = T/5
70 ? "AVERAGE = ";A
80 END
90 DATA 5,12,1,34,18

When you run the program, the computer will print AVERAGE = 14.
The program uses the variable T to keep a running total, and calcu­
lates the average in the same way as the INPUT average program.
The READ-DATA average program, however, finds the numbers to
average on a DATA line. Noliee line 30. READ X. The READ com­
mand tells the computer there must be a DATA statement in the pro­
gram. It finds the DATA line, and uses the first number as the current
value for the variable X. The next time through the loop the second
number in the DATA statement will be used as the value for X, and
soon.

You can put any number you want in a DATA statement, but you can­
not put calculations in a DATA statement. The DATA statement can
be anywhere you want in the program-even after the END state­
ment. This is because the computer never really executes the DATA
statement: it just refers to it. Be sure to separate your data items
with commas, but be sure not to put a comma between the word
DATA and the first number in the list.

If you have more than one DATA statement in your program, the com­
puter will refer to the one that is closest after the READ statement
being executed at the time. The computer uses a pointer to remind
itself which piece of data it read last. After the computer reads the
first number in the DATA statement, the pointer pOints to the second
number. When the computer comes to the READ statement again, it
assigns the value the pointer indicates to the variable name in the
READ statement.

59 USING C128 MODE-Advanced BASIC Programming

You can use as many READ and DATA statements as you need in a
program. but make sure there is enough data In the DATA statements
for the computer to read. Remove one of the numbers from the DATA
statement in the last program and run it again. The computer
responds with ?OUT OF DATA ERROR IN 30. What happened is that
when the computer executed the loop for the fifth time, there was no
data for it to read. That is what the error message is telling you. Put­
ting too much into the DATA statement doesn't create a problem
because the computer never realizes the extra data exists.

The RESTORE Command

You can use the RESTORE command In a program to reset the data
pointer to the first piece of data if you need to. Replace the END
statement (line 80) in the program above with:

80 RESTORE

and add:

85 GOTO 10

Now RUN the program. The program will run continuously using the
same DATA statement. NOTE: 11 the computer gives you an OUT OF
DATA ERROR message. it is because you forgot to replace the num­
ber that you removed previously from the DATA statement, so the
data is all used before the READ statement has been executed the
specified number of times.

You can use DATA statements to assign values to string variables.
The same rules apply as for numeric data. Clear the computer's
memory and type the following program:

10 FOR J = 1 TO 3
2Q READ A$
3O? A$
40 NEXT
50 END
60 DATA COMMODORE,128,COMPUTER

If the READ statement calls for a string variable, you can place let­
ters or numbers in the DATA statement. Notice however, that since
the computer is READing a string, numbers will be stored as a string
of characters, not as a value which can be manipulated. Numbers
stored as strings can be printed. but not used in calculations. Also,
you cannot place letters in a DATA statement if the READ statement
calls for a number variable.

60 USING C128 MOOE-Advanced BASIC Programming

--

Using Arrays

You have seen how to use READ-DATA to provide many values for a
variable. But what if you want the computer to remember all the data
in the DATA statement instead of replacing the value of a variable
with the new data? What jf you want to be able to recall the third
number, or the second string of characters?

Each lime you assign a new value to a variable, the computer erases
the old value in the variable's box in memory and stores the new
value in its place. You can tell the computer to reserve a row of
boxes in memory and store every value that you assign to that varia­
ble in your program. This row of boxes is called an array.

Subscripted
Variable.

If the array contains all of the values assigned to
the variable X In the READ· DATA example. it is
called the X array. The first value assigned to X
in the program is named X(I). the second value
is X(2), and so on. These are called subscripted
variables. The numbers in the parentheses are
called subscripts. You can use a variable or a
calculation as a subscript. The following is
another version of the averaging program,
this time using subscripted variables.

5 DIM X(5)
10 T = O
20 FOR J = 1 TO 5
30 READ X(J)
4OT = T + X(J)
50 NEXT
60 A = T/5
70 ? "AVERAGE ;;; " jA
80 END
90 DATA 5,12,1,34,18

Notice there are not many changes. Line 5 is the
only new statement. It tells the computer to set
aside five boxes in memory for the X array. Line
30 has been changed so that each time the
computer executes the loop, it assigns a value
from the DATA statement 10 Ihe position in the X
array that corresponds to the loop counter (J).
Line 40 calculates the total. just as it did before,
but you must use a subscripted variable to do it.

61 USING C128 MODE-Advanced BASIC Programming

Dlmenalonlng
Array.

Alter you run the program, if you want to recall
the third number, type ?X(3)(RETURN). The
computer remembers every number in the array
X. You can create string arrays to store the char·
acters in string variables the same way. Try
updating the COMMODORE 128 COMPUTER
READ· DATA program so the computer will
remember the elements in the A$ array.

S DtM AS(3)
10 FOR J = 1 TO 3
20 READ AS(J)
30 ? AS(J)
40 NEXT
50 END
60 DATA COMMODORE,CI28,COMPUTER

TIP: You do not need the DIM statement in your
program unless the array you use has more than
10 elements. See DIMENSIONtNG ARRAYS.

Arrays can be used with nested loops, so the
computer can handle data in a more advanced
way. What if you had a large chart with 10 rows
and 5 numbers in each row. Suppose you
wanted to find the average of the five numbers
in each row. You could create 10 arrays and
have the computer calculate the average of the
five numbers in each one. This is not necessary,
because you can put all the numbers in a two·
dimensional array. This array would have the
same dimenSions as the chart of numbers you
want to work with-10 rows by 5 columns. The
DIM statement for this array (we will call it array
X) should be:

10 DtM X(10,S)

This tells the computer to reserve space in its
memory for a two-dimensional array named X.
The computer reserves enough space for 50
numbers. You do not have to fill an array with as
many numbers as you DIMensioned it for, but
the computer will still reserve enough space for
all of the positions in the array.

62 USING C128 MODE-Advanced BASIC Programming

63

Sample
Program

Now it becomes very easy to refer to any num­
ber in the chart by its column and row posi tion.
Refer to the chari below. Find the third element
in the tenth row(tSOO). You would refer to this
number as X(1 0,3) in your program. The pro­
gram on the following page reads the numbers
from the chart into a two-dimensional array (X)
and calculates the average of the numbers in
each row.

Column
Row

1
2
3
4
5
6
7
8
9

10

1
1
2
5

10
20
30
40
50

100
500

'0 .. MlI(1C1,51,A(101
2OFORR = 1T010
3OT = 0
35FORC = 1106
40 READ x(A,c)
50 T = T + X(R.C)
eo NEXTC
70 A(lI) = TIll
., NEXT R
90 FOR A= 1 TO 10
100 PRINT ""ROW
110FOAC = 1105

2
3
4

10
20
40
60
80

100
200

1000

120 PRINT X(R,C):NEXT C
130 PRINT "AVERAGE =- ";A(R)
140 FOR D = 1 TO 1000:NEXT
1SO NEXT R
110 DATA 1,3.5.7,1
170 DATA 2A.8.8, 10
'80 DATA 5,'G,1&,31,26
110 DATA 1G.20.3D.40.50
20D DATA 2O,4O.ID,8I).100
210 DATA 80.I0.I0,120,150
2OODATA_ _
230 DATA so,.oo,'50.2G0.250
240DATA'~

3
5
6

15
30
60
90

120
150
300

1500

... DATA lIOO,.ooo..~
280 END

4
7
8

20
40
80

120
160
200
400

2000

5
9

10
25
50

100
150
200
250
500

2500

Programming
Subroutine.

The GOSUB-RETURN Command

Until now, the only method you have had to tell the computer to jump
to another part of your program is to use the GOTO command. What
if you want the computer to jump to another part of the program,
execute the statements in that section, then return to the pOint it left
off and continue executing the program?

The part of program that the computer jumps to and executes is
called a subroutine. Clear your computer 's memory and enter the
program below.

10 A$ = " SUBROUTlNE":B$ = " PROGRAM"
20 FOR J = l TO 5
30 INPUT " ENTER A NUMBER";X
4() GOSUB 100
50 PRINT B$:PRINT
60 NEXT
70 END
100 PRINT A$:PRINT
liO Z = XT2:PRINT Z
120 RETURN

This program will square the numbers you type and print the result .
The other print messages tell you when the computer is executing
the subroutine or the main program. Une 40 tells the computer to
jump to line 100, execute it and the statements following it until it
sees a RETURN command. The RETURN statement tells the com­
puter to go back in the program to the line immediately following the
GOSU B command and continue executing. The subroutine can be
anywhere in the program-including after the END statement. Also,
remember that the GOSUB and RETURN commands must always
be used logelher in a program (like FOR-NEXT and IF-THEN), OTher·
wise the computer will give an error message.

64 USING C128 MODE-A.dvanced BASIC Programming

-

Using Memory
Locations

The ON GOTO/GOSUB Command

There is another way to make the computer jump to another section
of your program (called branching). Using the ON statement, you can
have the computer decide what part of the program to branch to
based on a calculation or keyboard input. The ON statement is used
with either the GOTO or GOSUB-RETURN commands, depending on
what you need the program to do. A variable or calculation should be
after the ON command. After the GOTO or GOSUB command. there
should be a list of line numbers. Type the program below to see how
the ON command works.

10? " ENTER A NUMBER BETWEEN ONE AND FIVE"
20 INPUT X
30 ON X GOSUB 100,200,300,400,500
40 END
100? " YOUR NUMBER WAS ONE" :RETURN
200 ? " YOUR NUMBER WAS TWO":RETURN
3OO? "YOUR NUMBER WAS THREE":RETURN
400? "YOUR NUMBER WAS FOUR":RETURN
5OO? " YOUR NUMBER WAS FIVE" :RETURN

When the value of X is 1, the computer branches to the first line num­
ber in the list (1 00). When X is 2, the computer branches to the sec­
ond number in the list (200), and so on.

Using PEEK and POKE for RAM/ROM Acce ••

Each area of the computer 's memory has a special function. For
instance. there is a very large area to store your programs and the
variables associated with them. This part of memory. called RAM , is
cleared when you use the NEW command. Other areas are not as
large, but they have very specialized functions . For instance, there is
an area of memory locations that controls the music features of the
computer.

There are two BASIC commands-PEEK and POKE-that you can
use to access and manipulate the computer's memory. Use of PEEK
and POKE commands can be a powerful programming device
because the contents of the computer 's memory locations deter­
mine exactly what the computer should be doing at a specific time.

65 USING C128 MODE-Advanced BASIC Programming

Using PEEK

Using POKE

PEEK can be used to make the computer tell
you what value is being stored in a memory
location (a memory location can store any value
between 0 and 255). You can PEEK the value of
any memory location (RAM or ROM) in DIRECT
or PROGRAM mode. Type:

P = PEEK(2594) 8''''EIJ'"'l!I!II..:'''' ... •
? P :.REIll.B!I

The computer assigns the value in memory
location 2594 to the variable P when you press
RETURN after the first line. Then it prints the
value when you press RETURN after entering
the? P command. Memory location 2594 deter'
mines whether or not keys like the spacebar and
CRSR repeat when you hold them down. A 128
in location 2594 tells the computer to repeat
these keys when you hold them down. Hold
down the spacebar and watch the cursor move
across the screen.

To change the value stored in a RAM location,
use the POKE command. Type:

POKE 2594,96

The computer stores the value after the comma
(96) in the memory location before the comma
(2594), A 96 in memory location 2594 tells the
computer not to repeat keys like the spacebar
and CRSR keys when you hold them down. Now
hold down the spacebar and watch the cursor.
The cursor moves one position to the right , but it
does not repeat . To return your computer to its
normal state, type:

POKE 2594,128 BEJURN

You cannot alter the value of all the memory
locations in the computer- the values in ROM
can be read, but not changed.

NOTE: These examples assume you are in
bank,0', See the description of the BANK
command in Chapter V, BASIC 7.0 Encyclo­
pedia for details on banks. Refer to the
Commodore 128 Programmer's Reference

66 USING C128 MODE-AdvanCed BASIC Programming

a •• lc Function. What I. a Function?

Guide for a complete memory map of the
computer, which shows you the contents of
all memory locations.

A function is predefined operation of the BASIC language that gener­
aUy provides you with a single value. When the function provides the
value, it is said to "return" the value. For instance, the SQR (square)
function is a mathematical function that returns the value of a spe­
cific number when it is raised to the second power-Le., squared.

There are two kinds of functions:

Numeric-returns a result which is a single number. Numeric
functions range from calculating mathematical values to speci­
fying the numeric value of a memory location.

String-returns a result which is a character.

Following are descriptions of some of the more commonly used
functions. For a complete list of BASIC 7.0 functions see Chapter V.
BASIC 7.0 Encyclopedia.

The INTEGER Function (INT)

What if you want to round off a number to the nearest integer? You 'll
need to use INT, the integer function. The INT function takes away
everything after the decimal paint. Try typing these examples:

? INT(4.25)
? INT(4.75)
? INT(SQR(SO))

If you want to round off to the nearest whole number, then the sec·
and example should return a value of 5. In fact , you should round up
any number with a decimal above 0.5. To do this, you have to add 0.5
to the number before using the INT function. In this way, numbers
with decimal portions above 0.5 will be increased by 1 before being
rounded down by the INT function. Try this:

? INT(4.75 + 0.5) RETURN

67 USING C128 MODE-Advanced BASIC Programming

The computer added 0.5 to 4.75 before it executed the INT function,
so that it rounded 5.25 down to 5 for the result . If you want to round
off the result of a calculation, do this:

? INT((100/6) + 0.5) 'lIETUBl'r

You can substitute any calculation for the division shown in the inner
parentheses.

What if you want to round off numbers to the nearest 0.01? Instead of
adding 0.5 to your number, add 0.0005, then multiply by 100. Let's
say you want to round 2.876 to the nearest 0.01 . Using this method,
you start with:

? (2.876 + 0.005)'100 ~EIU811

Now use the INT function to get rid of everything after Ihe decimal
point (which moves two places to the right when you multiply by
100). You are left with:

? INT((2.876 + 0.005)'100) RETUJl.IL

which gives you a value of 288. All that's left to do is divide by 100 to
get the value of 2.88, which is the answer you want. Using this tech· ---'
nique, you can round off calculations like the following to the nearest
0.01 :

? INT((2.876 + 1.29 + 16.1·9.534) + 0.005)'100/100 :-.RETI!I!I'L

aeneratlng Random Numbers-The AND Function

The RND functions tells the computer to generate a random number.
This can be useful in simulating games of chance, and in creating
interesting graphic or music programs. All random (RND) numbers
are nine digits, in decimal form, between the values 0.000000001
and 0 .999999999. Type:

? RN 0 (0) ~8EIlJJIIL

Multiplying the randomly generated number by six makes the range
of generated numbers increase to greater than 0 and less than 6. In
order to include 6 among the numbers generated, we add one to the
resul! of RND(O)'6. This makes the range 1 (X(7. I! we use the INT
function to eliminate the decimal places, the command will generate
whole numbers from 1 to 6. This process can be used to simulate the
rolling of a die. Try this program:

10 R= INT(RND(1)'6 + 1)
2O? R
30 GOTO 10

68 USING C128 MODE-Advanced BASIC Programming

•

Each number generated represents one toss of a die. To simulate a
pair of dice, use two commands of this nature. Each number is gen­
erated separately, and the sum of the two numbers represents the
total of the dice.

The DO/LOOP statement described in Section 5 provides another
way to generate random numbers.

The ASe and CHR$ Functions

Every character that the Commodore 128 can display (including
graphic characters) has a number assigned to it. This number is
called a character string code (CHR$) and there are 255 of them in
the Commodore 128. There are two functions associated with this
concept that are very useful. The first is the ASC function. Type:

ASC("Q'1 :"8EIURN

The computer responds with 81 . 81 is the character string code for
the Q key. Substitute any character for 0 in the command above to
find out the Commodore ASCII code number for any character.

The second function is the CHA$ function. Type:

CHR$(81) :J!EI!,!RN

The computer responds with O. In effect. the CHA$ function is the
opposite of the ASC function. They both refer to the table of charac­
ter string codes in the computer's memory. CHA$ values can be
used to program function keys. See Section 5 for more information
about this use of CHR$. See Appendix E of this Guide for a full listing
of ASC and CHR$ codes.

Converting Strings and Numbers

Sometimes you may need to perform calculations on numeric char­
acters that are stored as string variables in your program. Other
times, you may want to perform string operations on numbers. There
are two BASIC functions you can use to convert your variables from
numeric to string type and vice versa.

69 USING C128 MODE-Advanced BASIC Programming

The STOP and
CONT (Continue)
Commands

70

Th.VAL
Function

Th.STR$
Function

The VAL function returns a numeric value for a
string argument. Clear the computer's memory
and type this program:

10 AS = "64"
2Q A = VAL(A$)
30 ? "THE VALUE OF";AS;"'S";A
40 END

The STR$ function returns the string representa­
tion of a numeric value. Clear the computer's
memory and type this program.

10 A = 65
2Q A$ = STR$(A)
3O? A" IS THE VALUE OF";A$

The Square Root FUn4:;tlon (SQR)

The square root function is SQR. For example, to find the square root
of 50, type:

? SQR(SO) eAEIlIRN

You can find the square root of any positive number in this way.

The Absolute Value Function lABS)

The absolute value function (ASS) is very useful in dealing with nega­
tive numbers. You can use this function to get the positive value of
any number-positive or negative. Try these examples:

? ABS(- 10) :.REIUJItL

? ABS(5)" IS EQUAL TO " ABS(- 5) RETURN

You can make the computer stop a program, and resume running it
when you are ready. The STOP command must be included in the
program. You can put a STOP statement anywhere you want to in a
program When the computer "breaks" from the program (that is,
stops running the program), you can use DIRECT mode commands
to find out exactly what is going on in the program. For example, you
can find the value of a loop counter or other variable. This is a power­
ful device when you are "debugging" or fixing your program. Clear
Ihe computer's memory and type the program below,

USING C128 MODE-AdYanced BASIC Programming

10 X = INT(SQR(630))
20 Y = (.025°80)12
30 Z = INT(X°Y)
40 STOP
50 FOR J = 0 TO Z STEP Y
50 ? " STOP AND CONTINUE"
70 NEXT
80 END

Now RUN the program. The computer responds with "BREAK IN
40" . At this point, the computer has calculated the values of X, Y and
Z.lf you want to be able to figure out what the rest of the program is
supposed to do, tell the computer to PRINT X;Y;Z. Often when you
are debugging a large program (or a complex small one), you'll want
to know the value of a variable at a certain point in the program.

Once you have all the information you need, you can type CONT (for
CONTinue) and press RETURN assuming you have not edited any­
thing on the screen. The computer then CONTinues with the pro­
gram, slarting with the statement after the STOP command.

ThiS section and the preceding one have been designed to familiar­
ize you with the BASIC programming language and its capabilities.
The remaining four sections of this chapter describe commands that
are unique to Commodore 128 mode, Some Commodore 128 mode
commands provide capabilities that are not available in C64 mode.
Other Commodore 128 mode commands let you do the same thing
as certain C64 commands, but more easily. Remember that more
information on every command and programming technique in this
book can be found in the Commodore 128 Programmer's Reference
Guide. The syntax for al/ Commodore 7.0 commands is given in
Chapter V, BASIC 7.0 Encyclopedia.

71 USING C1:2:8 MODE-Advanced BAS1C Programming

SECTION 5
Some BASIC
Commands
and Keyboard
Operations
UniquetoC128
Mode

73

INTRODUCTION 75

ADVANCED LOOPING 75
The DO/LOOP Statement 75

Unt il 75
Whi le 76
Exit 76

The ELSE Clause with IF·THEN 77
The BEGIN/BEND Sequence with IF·THEN 77
The SLEEP Command 78

FORMATTING OUTPUT 78
The PRINT USING Command 78
The PUDEF Command 79

SAMPLE PROGRAM 79

INPUTTING DATA WITH THE GETKEY COMMAND 80

PROGRAMMING AIDS 81
Entering Programs 81

AUTO 81
RENUMBER 81
DELETE 82

Identifying Problems in Your Programs 83
HELP 83
Error Trapping-The TRAP Command 83
Program Traci ng-The TRON and TROFF Commands 85

WINDOWING 86
Using the WINDOW Command to Create a Window 86
Using the ESC key to Create a Window 87

2 MHZ OPERATION 89
The FAST and SLOW Commands 89

KEYS UNIQUE TO C128 MODE 89
Function Keys 89
Redefining Function Keys 90
Other Keys Used in C128 Mode Only 90

HELP 90
NO SCROLL 91
CAPS LOCK 91
40/80 DISPLAY 91
ALT 91
TAB 92
LINE FEED 92

USING C128 MODE-Some BASIC Commands and Keyboard Operations Unique to
C128 Mode

Introduction

Advanced
Looping

This section introduces you to some powerful BASIC commands and
statements that you probably haven't seen before. even if you are an
experienced BASIC programmer. If you're familiar wi th programming
in BASIC, you've probably encountered many situations in which you
could have used these commands and statements. This section
explains the concepts behind each command and gives examples of
how to use each command in a program. (A complete list and an
explanation of these commands and statements may be found in
Chapter V, BASIC 7.0 Encyclopedia.) This section also describes how
to use the special keys that are available to you in C128 mode.

The DO/LOOP Statement

The DOfLOOP statement provides more sophisticated ways to cre·
ate a loop than do the GOTO, GOSUB or FOR/NEXT statements. The
DO/LOOP statement combination brings to the BASIC language a
very powerful and versatile technique normally available only in
structured programming languages. We'll discuss just a few possible
uses of DO/LOOP in this explanation.

If you want to create an infinite loop, you start with a DO statement,
then enter the line or lines that specify the action you want the com­
puter to perform. Then end with a LOOP statement, like this:

100 DO
110 PRINT " REPETITION"
120 LOOP

Press the RUN/STOP key to stop the program.

The directions following the DO statement are carried out until the
program reaches the LOOP statement (line 120): control is then
transferred back to the DO statement (line 100). Thus, whatever
statements are in between DO and LOOP are performed indefinitely.

Until Another useful technique is to combine the 001
LOOP wi th the UNTIL statement. The UNTIL
statement sets up a condition that directs the
loop. The loop will run continually unless the
condition for UNTIL happens.

100 DO: INPUT " DO YOU LIKE YOUR
COMPUTER";A$
110 LOOP UNTIL AS = " YES"
120 PRINT " THANK YOU"

USING C128 MODE-Some BASIC Commands and Keyboard Operations UnIque to
75 C128 Mode

While

Exit

The DO/LOOP statement is often used to repeat
an entire routine indefinitely in the body of a
program, as in the following:

10 PRINT " PROGRAM CONTINUES UNTIL
YOU TYPE 'QUIT'''
20 DO UNTIL A$ = "QUIT"
30 INPUT " DEGREES FAHRENHEIT";F
4() C = (519)"(F - 32)
50 PRINT F;" DEGREES FAHRENHEIT
EQUALS " ;C; " DEGREES CELSIUS"
60 INPUT "AGAIN OR QUIT" ;A$
70 LOOP
SO END

Another use of DO/LOOP is as a counter, where
the UNTIL statement is used to specify a certain
number of repeti t ions.

10N=2*2
20 PRINT"TWO DOUBLED EQUALS"; N
30 DO UNTIL X=2S
4() X=X+1
50 N=N"2
60 PRINT" OOUBlEO";X + 1;"TlMES ... ";N
70 LOOP
SO END

Notice that if you leave the counter statement
oul (the UNTIL X = 25 pari in line 30), Ihe num­
ber is doubled indefinitely until an OVERFLOW
error occurs.

The WHILE statement works in a similar way to
UNTIL, but the loop is repeated only while the
condition is in effect, such as in this reworking
of this brief program:

100 DO: INPUT " DO YOU LIKE YOUR
COMPUTER";A$
110 LOOP WHILE A$ () " YES"
120 PRINT "THANK YOU"

An EXIT statement can be placed within the
body of a DD/LOOP When Ihe EXIT slalemenl is
encountered, the program jumps to the next
statement following the LOOP statement.

US1NG C128 MODE-Some BAS1C Commands and Keyboard Opera tions Unique to
76 C128 Mode

The ELSE Clause with IF·THEN

The ELSE clause provides a way to tell the computer how to respond
if the condition of the IF-THEN statement is false. Rather than cont in­
uing to the next program line, the computer will execute the com­
mand or branch to the program tine mentioned in the ELSE clause.
For example, if you wanted the computer to print the square of a
number, you could use the ELSE clause like this:

10 INPUT ''TYPE A NUMBER TO BE SaUARED" ;N
20 IF N(100 THEN PRINT N"N: ELSE 40
30 END
40 ?" NUMBER MUST BE (100": GOTO 10

Notice that you must use a colon between the IF-THEN statement
and Ihe ELSE clause.

The BEGIN/BEND Sequence with IF·THEN

BASIC 7.0 allows you to take the IF-THEN condition one step fur ther.
The BEGIN/BEND sequence permi ts you to include a number of pro­
gram lines to be executed if the IF condi tion is true, rather than one
simple action or GOTO. The command is constructed like th is:

IF condition THEN BEGIN:
(program lines):
BEND:ELSE

Be sure to place a colon between BEGIN and any instructions to be
computer, and again between the last command in the sequence
and the word BEND. BEGIN/BEND can be used withoul an ELSE
ctause, or can be used following the ELSE clause when only a single
command follows THEN. Try this program:

10 INPUT A
20 IF A(100 THEN BEGIN: ? " YOUR NUMBER WAS ";A
30 SLEEP 2:REM DELAY
40 FOR X =1 TO A
50 ?"THIS IS AN EXAMPLE OF BEGIN/BEND"
60 NEXT X
70 ?"THAT'S ENOUGH" :BEND:ELSE ?" TOO MANY"
80 END

Th is program asks for a number from the user. IF the number is less
than 100, the statements between the keywords BEGIN and BEND
are performed, along with any statements on the same line as BEND
(except lor ELSE). The message "YOUR NUMBER WAS N" appears
on the screen. Line 30 is a delay loop used to keep the message on

USING C128 MODE-Some BASIC Commands and Keyboard Operations UnIque to
77 C126 Mode

Formatting
Output

the screen long enough so it can be read easily. Then a FORfNEXT
loop is used to display a message for the number of times specified
by the user. If the number is greater than 100, the THEN condition is
skipped, and the ELSE condition (printing "TOO MANY") is carried
out. The ELSE keyword must be on the same line as BEND.

The SLEEP Command

Note the use of the SLEEP command in line 30 of the program just
discussed. SLEEP provides an easier, more accurate way of inser t­
ing and timing a delay in program operation. The format for the
SLEEP command is

SLEEP n

where n indicates the number of seconds, in the range 1 to 65535,
that you want the program to delay. In the command shown in line
30, the 2 specifies a delay of two seconds.

The PRINT USING Command

Suppose you were writing a sales program that calculated a dollar
amount. Total sales divided by number of salespeople equals aver­
age sales. But performing this calculation might result in dollar
amounts with four or five decimal placesl You can format the results
the computer prints so that only two decimal places are displayed.
The command which performs this function is PRINT USING.

PRINT USING lets you create a format for your output, using spaces,
commas, decimal points and dollar signs. Hash marks (the /I sign)
are used to represent spaces or characters in the displayed result.
For example:

PRINT USING "#S#####.##";A

tells the computer that when A is pnnted, it should be in the form
given, with up to five places to the lefl of the decimal point, and two
places to the right. The hash mark in front of the dollar sign indicates
Ihat Ihe $ should floal ; that is, it should always be placed next to the
left-most number in the format.

11 you want a comma to appear before the last three dollar places, as
in $1 ,000.00, include the comma in the PRINT USING statement.
Remember you can format output with spaces, commas, decimal
points, and dollar signs. There are several other special characters
for PRINT USING. see the BASIC Encyclopedia for more information.

USING C128 MODE-Some BASIC Commands and Keyboard OpersUons Unique to
78 C128 Mode

Sample Program

79

The PUDEF Command

If you want formatted output representing something other than dol·
lars and cents, use the PUDEF (Print Using DEFine) command. You
can replace any of four format characters with any character on the
keyboard.

The PUDEF command has four positions, but you do not have to
redefine ali four. The command looks like this:

PUDEF" • • $ "
1 2 34

Here:

• position 1 is the filler character. A blank will appear if you do
not redefine this position.

• position 2 is the comma character. Default is the comma.
• position 3 is the decimal point.
• position 4 is the dollar sign.

If you wrote a program that converted dollar amounts to English
pounds, you could format the output with these commands:

10 PUOEF " £"
20 PRINT USING " #$####.##";X

This program calculates interest and loan payments, using some of
the commands and statements you Just learned. It sets a minimum
value for the loan using the ELSE clause with an IF·THEN statement,
and sets up a dollar and cenls format with PRINT USING.

10 INPUT " LOAN AMOUNT IN DOLLARS";A
20 IF A{ 100 THEN 80: ELSE P = .15
30 I=A" P
4ll ?" TOTAL PAYMENT EQUALS";
50 PRINT USING "#$#####.##" ;A + I
60 GOTO 80
70 ?" LOANS OF UNDER $100 NOT AVAILABLE"
80 END

USING C128 MODE-Some BASIC Commands and Keyboard Operat ions Unique to
C128 Mode

Inputting Data
with the GETKEY
Command

You have learned to use INPUT and GET commands to enter DATA
during a program. Another way for you to enter data while a program
is being RUN is with the GETKEY statement. The GETKEY statement
accepts only one key at a time. GETKEY is usually followed by a
string variable (A$, for example). Any key that is pressed is assigned
to that string variable. GETKEY is useful because it allows you to
enter data one character at a time wihtout having to press the
RETURN key alter each character. The GETKEY statement may only
be used in a program.

Here is an example of using GETKEY in a program:

1000 PRINT " PLEASE CHOOSE A, B, C, 0, E, OR F"
1010 GETKEY AS
1020 PRINT AS;" WAS THE KEY YOU PRESSED."

The computer waits until a single key is pressed; when the key is
pressed. the character is assigned to variable A$, and printed out in
line 1020. The following program features GETKEY in more complex
and useful fashions: for answering a multiple-choice question and
also asking if the question should be repeated. If the answer given is
incorrect, the user has the option to try again by pressing the " Y"
key (line 80). The key pressed for the multiple choice answer is
assigned to variable A$ while the "TRY AGAIN " answer is assigned
to B$, through the GETKEY statements in lines 60 and 90. IFfTHEN
statements are used for loops in the program to get the proper com­
puter reaction to the different keyboard inputs.

10 PRINT "WHO WROTE "THE RAVEN?
20 PRINT "A. EDGAR ELLEN POE"
30 PRINT " B. EDGAR ALLAN POE"
40 PRINT "C. IGOR ALLEN POE"
50 PRINT " D. ROB RAVEN"
60 GETKEY AS
70 IF A$= " B" THEN 150
eo PRINT " WRONG. TRY AGAIN? (Y OR N)"
90 GETKEY BS
100 IF B$= "Y" THEN PRINT "A,B,C, OR D?":GOTO 60
110 IF BS= " N" THEN 140
120 PRINT "TYPE EITHER Y OR N-TRY AGAIN"
130 GOTO 90
140 PRINT "THE CORRECT ANSWER IS B."
145 GOTO 160
150 PRINT "CORRECT!"
160 END

USING C128 MODE-Some BASIC Commands and Keyboard Operations Unique to
80 C128 Mode

Programming
Aids

GETKEY is very Similar to GET, except GETKEY will automatically
wait lor a key to be pressed.

In earlier sections, you learned how to make changes in your pro­
grams, and correct typing mistakes with INSTIDEL BASIC also pro­
vides other commands and functions which help you locate actual
progam errors, and commands which you can use to make program­
ming sessions flow more smoothly.

Entering Programs

Auto

Renumber

C128 BASIC provides an auto-numbering pro­
cess. You determine the increment for the line
numbers. Let's say you want to number your
program in the usual manner, by tens. Before
you begin to program, while in DIRECT mode,
type:

AUTO 10 ~RETURi'i

The computer wi ll automatically number your
program by tens. When you press the RETURN
key, the next line number appears, and the cur­
sor is in the correct place for you to type the
next statement. You can choose to have the
computer number the commands with any
increment; you might choose 5 or even 50. Just
place the number after the word AUTO and
press RETURN. To turn off the auto-numbering
feature, type AUTO with no increment, and
press RETURN.

If you write a program and later add statements
to it , sometimes the line numbering can be awk­
ward. Using the RENUMBER command you can
change the line numbers to an even increment
for part or ali of your program. The RENUMBER
command has several optional parameters, as
listed below in brackets:

RENUMBER (new starting line!,
increment(,old starting line])]

USING C128 MODE-Some BASIC Commands and Keyboard Operat ions Unique to
81 C128 Mode

Delete

The new starting line is what the first program
line will be numbered after the RENUMBER
command is used. If you don't specify, the
default is 10. The increment is the spacing
between line numbers, and it also defaults to 10.
The old starting line number is the line number
where renumbering is to begin. This feature
allows you to renumber a portion of your pro·
gram, rather than all of it. It defaults to the first
line of the program. For example,

RENUMBER 41),,60

tells the computer to renumber the program
starting at line 80, in increments of 10. Line 80
becomes line 40.

Notice that this command, like AUTO, can only
be executed in DIRECT mode.

You know to delete program lines by typing the
line number and pressing the RETURN key. This
can be tedious if you want to erase an entire
portion of your program. The DELETE command
can save you time because you can specify a
range of program lines to erase all at once. For
example,

DELETE 10-50

will erase lines 10, 50, and any in between. The
use of DELETE is similar to that of LIST, in that
you can specify a range of lines up to a given
line, or following it, or a single line only, as in
these examples:

DELETE-120
erases all lines up to and including 120
DELETE 120-
erases line 120 and any line after it
DELETE 120
erases line 120 only

USING C12B MODE-Some BASIC Commands and Keyboard Operations Unique to
82 C126 Mode

-

Identifying Problems in Your Programs

When a program doesn't work the way you expected, an error mes­
sage usually occurs. Sometimes the messages are vague, however,
and you still don't understand the problem. The Commodore 128
computer has several ways of helping you locate the problem.

Help The Commodore 128 provides a HELP com­
mand that specifies the line in which a problem
has occurred. To actuate the HELP command,
just press the special HELP key on the row of
keys located above the main keyboard.

Type the following statement. It contains an
intentional error, so type it just as is:

10 ?3;4:5;6

When you RUN this one-line program, the com·
puter prints 3 and 4 as expected, but then
responds "SYNTAX ERROR IN 10". Let's sup·
pose you can', see the error (a colon instead of
a semicolon between 4 and 5). You press the
HELP key. (You can also type HELP and press
RETURN.) The compuler displays the line again,
bul the 5:6 is highlighted to show the error is in
that line.

Error Usually, if an error occurs in a program, the pro-
Trapping-The gram "crashes" (stops running). AI that point,
TRAP Command you can press the HELP key to track down the

error. However. you can use the BASIC 7.0
TRAP command to include an error·trapping
capability within your program. The TRAP com­
mand advises you to locate and correct an error,
then resumes program operation. Usually, the
error·trapping function is set in the first line of a
program:

5 TRAP tOO

tells the computer that if an error occurs to go to
a certain line (in this case, line 100). Line 100
appears at the end of Ihe program, and sels up

USING C128 MODE-Some BASIC Commands and Keyboard Operallons Unique 10
83 C128 Mode

a contingency. Neither line is executed UNLESS
there is an error. When an error occurs, the line
with the TRAP statement is enacted, and control
is directed to another part of the program. You
can use these statements to catch anticipated
errors in entering data, resume execution, or
return to text mode from a graphics mode, to
name just a few options. If you run the DO/LOOP
example (which doubled numbers) without an
UNTIL slalemenl, you can gel an OVERFLOW
error and the program crashes. You can prevent
that from happening by adding two lines, one at
the beginning of the program and one at the
end. For this example, you might add these two
lines:

5 TRAP 100
100 IF N) l THEN END

Even though N has been much greater than one
for the entire program, the statement isn't con­
sidered until there is an error. When the number
"overflows" (is greater than the computer can
accept), the TRAP statement goes into effect.
Since N is greater than one, the program is
directed to END (rather than crashing.)

Here is an example in which trapping is used to
prevent a zero from being input for division:

10 TRAP 1000
100 INPUT " I CAN DIVIDE BY ANY
NUMBER, GIVE ME A NUMBER TO
DIVIOe";O
110 INPUT " WHAT SHOULD I DIVIDE IT
BY";B
l:ro A = DIB
13C PRINT D;"DIVIDED BY";B;"EQUALS" ;A
140 END
1000 IF B = O THEN PRINT"EVEN I CAN'T
DO THAT"
1100 INPUT " PICK A DIFFERENT
NUMBER";B:RESUME 120

USING C128 MODE-Some BASIC Commands and Keyboard Opefatlons Unique to
B4 C128 Mode

Program
Tracing-The
TRONand
TROFF
Commands

Nolice Ihe RESUME in line 1100. This lells Ihe
computer to return to the line mentioned (in this
case, , 20) and continue. Depending on the error
that was trapped, resumIng execution mayor
may not be possible.

For additional Information on error trapping, see
the error functions ERR$, EL and ER, described
in Chapler V. BASIC 7.0 Encyclopedia.

When a problem in a program occurs, or you do
not get the results you expect, it can be useful to
methodically work through the program and do
exactly what the computer would do. This pro­
cess is called tracing. Draw variable boxes and
update the values according to the program
statements. Perform calculations and print
results following each instruction.

Tracing may show you, for example, that you
have used a GOTO with an incorrect line num­
ber, or calculated a result but never stored it in a
variable. Many program errors can be located
by pretending to be the computer, and following
only one instruction at a time. Your C128 can
perform a type of trace using the special com­
mands TRON and TROFF (shari for TRace ON
and TRace OFF). When Ihe program is run, with
TRACE ON the computer prints the line num­
bers in the order they are executed, as well as
any results. In this way. you may be able to see
why your program is nol giving the results you
expected.

Type any short program we have used so far, or
use one of your own design. To activate Irace
mode, Iype TRON in DIRECT mode. When you
run the program, notice how line numbers
appear in brackets before any results are dis­
played. Try to follow the line numbers and see
how many steps the computer needed to arrive
at a certain point. TRON will be more interesting
if you pick a program with many branches, such
as GOTO, GOSUB and IF·THEN·line number.
Type TROFF 10 lurn Irace mode off before can·
tinuing.

USING C128 MODE-Some BASIC Commands and Keyboard Operations Unique to
85 C128 Mode

Windowing

You don't have to trace an entire program. You
can place TRON within a program as a line prior
to the program section causing problems. Put
the word TROFF as a program line after the trou­
blesome section. When you run the program,
only the lines between TRON and TROFF will be
bracketed in the results.

Windows are a specific area of the screen that you define as your
workspace. Everything you type (lines you type, listings of programs,
etc.) after setting a window appears within the window's boundaries,
not affecting the screen outside the window area. The Commodore
128 provides two methods of creating windows: the WINDOW com­
mand and ESCAPE key functions.

Using the WINDOW Command to Create a Window

The Commodore 128 BASIC 7.0 language features a command that
allows you to create and manipulate windows: the WINDOW com­
mand. The command format is:

WINDOW top-left column, top-left row, bottom-right column,
bottom-right row (,clear option]

The first two numbers after WINDOW specify the column and row
number of where you want the top left corner of the window to be;
the next two numbers are the coordinates for the bottom right cor­
ner_ Remember that the screen format (40 or 80 columns) dictates
the acceptable range of these coordinates. You can also include a
clear option with this command. If you add 1 10 the end of the com·
mand, the window screen area is cleared, as in this example:

WINDOW 10, 10, 20, 20, 1

Here's a sample program that creates four windows on the screen, in
either 40- or 80-column format.

USING e128 MODE-Some BASIC Commands and Keyboard Operations Unique to
86 C128 Mode

-

10 PRINT·[J~ :REM CLEAR THE SCREEN
20 AS-~A8CDEFGHIJKLMNOPQRSTUVWXYZ"
30 BS-A$+A$+A$
40 FOR I-ITO 25 : PRINT BS : NEXT : REM PILL SCREEN WITH CHARACTERS
50 WINDOW I , 1 ,8 , 20 :REM DEFINE WINDOW 1
60 PR I NT"
70 REM TH~PREVIOUS LINE FILLS WINDOW 1 WITH RED
80 WINI' lS ' 39 ' 20 ' 1 : REM DEFIN~ 2ND WINDOW
90 PRINT ; BS , AS :REH FILL WINDOW WITH CHARACTERS
lO~ WINDOW 0 . 1 , 39,22 , 1 : REM DEFINE 3RD WINDOW
110 PRIN : LIST :REH SELECT YELLOW AND LIST IN WINDOW
120 WINDOW , 5,33 . 18,1 : REH DEFINE 4TH WINDOW ON TOP OF THE OTHER THREe
130 PRIN1 iCt :PRINTAS : LIST : RE~ CHANGE COLOR - PRINT AS AND LIST IN WINOOW

U. lng the ESC Key to Create a Window

To set a window with the ESC (Escape) Key, follow these steps:

1. Move the cursor to the screen position you want as the top
left corner of the window.

2. Press the ESC key and release it, and then press T.

3. Move the cursor to the position you want to be the bottom
right corner of the window.

4. Press ESC and release, then B. Your window IS now set.

You can manipulate the window and the text inside using the ESC
key. Screen editing functions, such as inserting and deleting text,
scrolling, and changing the size of the window, can be performed by
pressing ESC followed by another key. To use a specific function,
press ESC and release it. Then press any of the following keys listed
for the desired function:

USING C128 MODE-Some BASIC Commands and Keyboard Operations Unique 10
87 C128 Mode

@ Erase everything from cursor to end of screen window
A Automatic insert mode
B Set the bottom right corner of the screen window (at the

current cursor location)
C Cancel insert and quote modes
o Delete current line
E Set cursor to non-flashing mode
F Set cursor to flashing mode
G Enable bell (by Control-G)
H Disabte bell
I Insert a line
J Move to the beginning of the current line
K Move to the end of the current line
l Turn on scrolling
M Turn off scrolling
N Return to normal (non-reverse video) screen display

(SO-column only)
o Cancel automatic insert mode
P Erase everything from the beginning of line to the cursor
a Erase everything from the cursor to the end of the line
R Reverse video screen display (BO·column only)
S Change to block cursor (.)
T Set the top left corner of the screen window (at the current

cursor location)
U Change to underline cursor L)
V Scroll screen up one line
W Scroll screen down one line
X Toggle between 40 and 80 columns
Y Restore default TAB stops
Z Clear all TAB stops

Experiment with the ESCape key functions. You will probably find
certain functions more useful than others. Note that you can use the
usuallNST/DEL key to perform text editing inside a window as well.

When a window is set up, all screen output is confined to the "box"
you have defined. If you want to clear the window area, press SHIFT
and CLEARIHOME together. To cancel the window, press the CLEARI
HOME key twice. The window is then erased, and the cursor is posi·
tioned in the top left corner of the screen. Windows are particularly
useful in writing, listing and running programs because they allow
you to work in one area of the screen while the rest of the screen
stays as is.

USING C128 MODE-Some BASIC Commands and Keyboard Operations Unique to
68 e12S Mode

2MH.
Operation

Keys Unique To
C128Mode

The FAST and SLOW Commands

The 2 MHz operating mode allows you to run non-graphic programs
in SO-column format at twice the normal speed. You can switch nor­
mal and last operation by using the FAST and SLOW commands.

The FAST command places the Commodore In 2 MHz mode. The
format of this command is:

FAST

The SLOW command returns the Commodore 128 to 1 MHz mode.
The format of this command is:

SLOW

Function Keys

The four keys on the Commodore 128 keyboard on the right side
above the numeric keypad are special function keys that leI you save
time by performing repetitive tasks with the stroke of just one key.
The tirst key reads FlIF2, the second F31F4, the third F51F6, and the
last F7/F8. You can use functions 1 through 4 by pressing the key by
itself. To use function keys 5, 6, 7 and 8, press SHtFT along with the
function key.

Here are the standard functions for each key:

Fl
GRAPHtC

F5.
DSAVE"

F2
DlOAD"

F6
RUN

F3
DtRECTORY

F7
ltST

Here's what each function involves:

F4
SCNClR

F8
MONITOR

KEY 1 enters one of the GRAPHICS modes when you supply
the number of the graphics area and press RETURN.
The GRAPHICS command is necessary for giving graph­
ics commands such as CIRCLE or PAINT. For more on
GRAPHICS, see Section 6.

KEY 2 prints DLOAD " on the screen. All you do is enter the
program name and end quotes and hit RETURN to load
a program from disk, instead of typing out DLOAD your­
self.

KEY 3 lists a DIRECTORY of files on the disk in the disk drive.
KEY 4 clears the screen using the SCNCLR command.

USING C128 MODE-Some BASIC Commands and Keyboard Operallons Unique 10
89 Cl28Mode

KEY 5 prints DSAVE" on the screen. All you do is enter the
program name, and press RETURN to save the current
program on disk.

KEY 6 RUNs the current program.
KEY 7 displays a liSTing of the current program.
KEY S lets you enter the Machine Language Monitor. See

Appendix J for a description of the Monitor.

Redefining Function Keys

You can redefine or program any of these keys to perform a function
that suits your needs. Redefining is easy. using the KEY command.
You can redefine the keys from BASIC programs. or change them at
any time in direct mode. A situation where you might want to rede­
fine a function key is when you use a command frequently, and want
to save time instead of repeatedly typing in the command. The new
definitions are erased when you turn off your computer. You can
redefine as many keys as you want and as many times as you want.

If you want to reprogram the F7 function key to return you to text
mode from high-resolution or multicolor·graphic modes, for example,
you would use the key command in this fashion:

KEY 7,"GRAPHIC on + CHR$(1 3)

CHR$(13) is Ihe ASCII code character for RETURN. So when you
press the F7 key after redefining the key, what happens is the com·
mand "GRAPHICO" is automatically typed out and entered into the
computer with RETURN. Entire commands or series of commands
may be assigned to a key.

Other Keys Used in C128 Mode Only

Help As noted previously, when you make an error in
a program. your computer displays an error
message to tell you what you did wrong. These
error messages are further explained in Appen·
dix A of this manual. You can get more assis­
tance with errors by using the HELP key. After
an error message. press the HELP key to locate
the exact point where the error occurred. When

USING C128 MODE-Some BASIC Commands and Keyboard Operations Unique to
90 C128 Mode

•

No Scroll

Caps Lock

40/80 Display

AI'

you press HELP, the line with the error is high·
lighted on the screen in reverse video (in 40
column), or underlined (in 80 column output).
For example:

?SYNTAX ERROR IN LINE 10 Your computer
displays this.

HELP You press HELP.

10 PRONT "COMMODORE COMPUTERS"
The line with the mistake IS highlighted in
reverse if in 40-column output, or underlined
in SO-column output.

Press this key down to stop the text from scroll·
ing when the cursor reaches the bottom of the
screen. This turns off scrolling until you press
the NO SCROLL key again.

This key leis you type in all capital letters with·
out using the SHIFT key. The CAPS LOCK key
locks when you press it, and must be pressed
again to be released. CAPS LOCK only affects
the lettered keys.

The 40180 key selects the main (default) screen
format: either 40 or 80 column. The selected
screen displays all messages and output at
power-up, or when RESET. or RUN/STOP/
RESTORE are used. This key may be used to set
the display format only before turning on or
resetting the computer. You cannot change
modes with this key after the computer is
turned on. Section 8 provides an explanation of
40180 column modes.

The ALT key allows programs to assign a special
meaning to a given key or set of keys.

Unless a specific application program redefines
it, holding down the ALT key and any other key
has no ef fecI.

USING C128 MODE-Some BASIC Commands and Keyboard OperaUons UnIque to
91 C128 Mode

Tab

Line Feed

This key works like the TAB key on a typewriter.
It may be used to set or clear tab stops on the
screen and to move the cursor to the columns
where tabs are set.

Pressing this key advances the cursor to the
next line, similar to a cursor down key .

•• ** ••• • **** •• • **

This section covers only some of the concepts, keys and commands
that make the Commodore 128 a special machine. You can find
further explanations of the BASIC language in the BASIC 7.0
Encyclopedia in Chapter V.

USING C128 MODE-Some BAStC Commands and Keyboard Operations Unique to
92 G126 Mode

INTRODUCING THE
COMMODORE 128

AN EXTRA PAIR OF
HANDS FOR THE
BUSY EXECUTIVE

GRAPHICS ARE
EASY ON YOUR
COMMODORE 128

A POWERFUL
LEARNING TOOL AT
HOME OR IN THE
CLASSROOM

SHIP TO SHORE
TELECOMMUNI-

- CATING MADE
EASY WITH YOUR
COMMODORE
COMPUTER AND
MODEM

PRODUCTION
PROBLEM SOLVING
ON YOUR
COMMODORE 128

THE COMMODORE
128 AND STUDENT
HEADING FOR
CLASS

THE BUDGET
FINALLY
BALANCED­
THANKS TO
COMMODORE 128

SECTION 6
Color, Animation
and Sprite
Graphics
Statements
Unique to the
C128

GRAPHICS OVERVIEW 95
Graphics Features 95
Command Summary 96

GRAPHICS PROGRAMMING ON THE COMMODORE 128 97
Choosing Colors 97
Types of Screen Display 98
Selecling the Graphic Mode 99
Displaying Graphics on the Screen 101

Drawing a Circle- The CI RCLE Command 101
Drawing a Box-The BOX Command 102
Drawing Lines, Points and Other Shapes-The DRAW

Command 102
PAINTing Outlined Areas-The PAINT Command 103

Displaying Characters on a Bit·Mapped Screen-
The CHAR Command 104

Changing the Size of Graphic Images-The SCALE
Command 104

Creating a Graphics Sample Program 106

SPRITES: PROGRAMMABLE, MOVABLE OBJECT BLOCKS 109
Sprite Creation 109
Using Sprite Statements in a Program 109
Drawing the Sprite Image 110
Storing the Sprite Data wilh SSHAPE 111
Saving the Picture Data in a Sprite 112
Turning on Sprites 112
Moving Sprites with MOVSPR 113
Creating a Sprite Program 115
Sprite Delinition Mode-The SPRDEF Command 116
Sprite Creation Procedure in SPRite DEFinition Mode 117
Adjoining Sprites 119
Storing Sprite Data in Binary Files 124

Usi ng Binary Files
BSAVE 127
BLOAD 128

93 USING C128 MODE- Color, Animation and Spti leGraphics Statements

Graphics
Overview

In C128 mode, the Commodore 128 BASIC 7.0 language provides
many new and powerful commands and statements that make
graphics programming much easier. Each of the two screen formats
available in C128 mode (40 columns and 80 columns) is conlrolled by
a separate microprocessor chip. The 40·column chip is called the
Video Interface Controller, or VIC for shor t. The 8O·column chip is
refer red to as the 8563. The vic chip, which provides 16 colors and
controls all the highly detailed graphics called bit-mapped graphics.
The SO-column chip, which also offers 16 colors, only displays char·
acters and character graphics. Thus, all detailed graphic programs in
C128 mode must be done in 40·column format.

Graphics Features

As part of its impressive C128 mode graphics capabilities, the Com·
modore 128 provides:

• 13 specialized graphics commands
• 16 colors
• Six different display modes
• Eight programmable movable objects called SPRITES
• Combined graphics/text displays

All these features are integrated to provide a versatile, easy·lo·use
graphics system.

95 USING C128 MODE-Colo" Animation and Sprite Graphics Statements

Command Summary

Here is a brief explanation of each graphics command:

BOX
CHAR
CIRCLE

- Draws rectangles on the bit·map screen
- Displays characters on the bit-map screen
- Draws circles, ellipses and other geometric

shapes
COLOR - Selects colors for screen border, foreground,

background and characters
DRAW - Displays lines and points on the bit·map screen
GRAPHIC - Selects a screen display (text, bit map or split­

screen bit map)
PAINT
SCALE

- Fills area on the bit-map screen with color
- Sets the relative size of the images on the bit-map

screen
SPRDEF - Enters sprite definition mode to edit sprites
SPRITE - Enables, colors, sets sprite screen priorities, and

expands a spri te
SPRSAV - Stores a text string variable into a sprite storage

area and vice versa
SSHAPE - Stores the image of a portion of the bit-map

screen into a text-string variable

Most of these commands are described in the examples in this sec­
tion. See Chapter V. BASIC 7.0 Encyclopedia, for detailed format and
information on all graphics commands and functions, including those
not discussed in this section.

96 USING C128 MODE-Color, Animat ion and Sprite Grapll iCS Statements

Oraphlcs
Programming on
IheC128

The following section describes a step-by-step graphics program­
ming example. As you learn each graphics command, add it to a
program you will build as you read this section. When you are fin­
ished, you will have a complete graphics program.

Choosing Colors

The first step in graphics programming is to choose colors for the
screen background, foreground and border. To select colors, type:

COLOR source, color

where source is the section of the screen you are coloring (back­
ground, foreground, border, etc.), and color is the color code for the
source. See Figure 6-1 for source numbers, Figure 6-2 for 40·
column-format color numbers, and Figure 6-3 for 80-column-format
color numbers.

Number
o
1
2
3
4

5
6

Color Code
1
2
3
4
5
6
7
B

Source
40'co lumn background color (VIC)
Foreground for the graphics screen (VIC)
Foreground color 1 for the multicolor screen (VIC)
Foreground color 2 for the multicolor screen (VIC)
40-column (VIC) border (whether in text or graphics
mode)
Character color for 40- or SO-column text screen
BO·column background color (8563)

Figure 6-1_ Source Numbers

Color
Black
White
Red
Cyan
Purple
Green
Blue
Yellow

Color Code
9

10
11
12
13
14
15
16

Color
Orange
Brown
Light Red
Dark Gray
Medium Gray
Light Green
Light Blue
Light Gray

Figure 6·2. Color Numbers in 40·Column Format

97 USING C128 MODE-COlor, Animation and Sprite Graphics Statements

Color Code
1
2
3
4
5
6
7
8

Color
Black
White
Dark Red
Light Cyan
Light Purple
Dark Green
Dark Blue
Light Yellow

Color Code
9

10
11
12
13
14
15
16

Color
Dark Purple
Dark Yellow
Light Red
Dark Cyan
Medium Gray
Light Green
Light Blue
Light Gray

Figure 6·3. Color Numbers in SO-Column Format

Types of Screen Display

Your C128 has several different ways of displaying information on the
screen; the parameter " source" in the COLOR command pertains to
different modes of screen display. The types of video display fall into
three categories.

The first one is text display, which displays only characters, such as
letters, numbers, special symbols and the graphics characters on
the front faces of most C128 keys. The C128 can display text in both
40-column and aD-column screen formats.

The second category of display mode is used for highly detailed
graphics, such as pictures and intricate drawings. This type of dis·
play mode includes standard bit-map mode and multicolor bit-map
mode. Bit-map modes allow you to control each and every individual
screen dot or pixel (picture element). This allows considerable detail
in drawing pictures and other computer art. These graphic displays
are only available in 40-column format. The 80-column display is ded­
icated to text display.

The difference between text and bit map modes lies in the way in
which each screen addresses and stores information. The text
screen can only manipulate entire characters, each of which covers
an area of 8 by 8 pixels on your screen, The more powerful bit-map
mode exercises control over each and every pixel on your screen.

The third type of screen display, split screen, is a mixture of the first
two types. The split-screen display outputs part of the screen as text
and part in bit-map mode (either standard or multi color). The C128 is

98 USING C128 MODE-COlor, Animation and Sprite Graphics Statements

capable of this because it uses two separate parts of the computer's
memory to store the two screens: one part for the text , and the other
for the graphics screen.

Type the following short program:

10 COLOR 0,1: REM TEXT BACKGROUND COLOR = BLACK
20 COLOR 1,3: REM FOREGROUND COLOR FOR BIT MAP

SCREEN = RED
30 COLOR 4,1: REM BORDER COLOR = BLACK

This example colors the background black, the foreground red and
the border black.

Selecting the Graphic Mode

The next graphics programming step is to select the appropriate
graphic mode. This is done using the GRAPHIC command. whose
format is as follows:

GRAPHIC mode [,cl ,51 or GRAPHIC CLR

where mode is a digit between 0 and 5, c is either a 0 or 1 and s is a
value between 0 and 25. Figure 6-4 shows the values corresponding
to the graphic modes.

Mode
o
1
2
3
4
5

Description
4O-column standard text
Standard bit map
Standard bit map (split screen)
Multicolor bit map
Multicolor bit map (split screen)
80-column text

Figure 6-4. Graphic Modes

The parameter CLR stands for CLEAR. Figure 6-5 explains the values
associated with CLEAR.

CValue

o
1

Description
Do not clear the graphics screen
Clear the graphics screen

Figure 6·5. CLEAR Parameters

99 USING C128 MODE-Color, Animation and Sprite Graphics Statements

When you first run your program, you will want to clear the graphics
screen for the first time, so set c equal to 1 in the GRAPHIC com­
mand. If you run it a second time, you may want to leave your picture
on the screen, instead of drawing it all over again. In this case, set c
equal to O.

The s parameter specified where the start of the text screen in split­
screen mode is to begin at the line after the specified line number. If
you omit the s parameter and select a split-screen graphic mode (2
or 4), the text screen portion is displayed in rows 20 through 25; the
rest of the screen is bit mapped. The s parameter allows you to
change the starting line of the text screen to any line on the screen,
ranging from 1 through 25. A zero as the s parameter indicates the
screen is not split, and is all text.

The final GRAPHIC command parameter is CLR. When you first
issue a bit-map graphic command, the Commodore 128 allocates a
9K area for your bit-mapped screen information. 8K is reserved for
the data for your bit map and the additional 1 K is dedicated for the
color data (video matrix). Since 9K is a substantial block of memory,
you may want to use it again for another purpose later on in your
program. This is the purpose of CLR. It reorganizes the Commodore
128 memory and gives you back the 9K of memory that was dedi­
cated to the bit·map screen, so you can use it for other purposes.

The format for CLR is as follows:

GRAPHIC ClR

When using this format, omit all other GRAPHIC command
parameters.

Add the following command to your program. 11 places the C128 in
standard bit-map mode and allocates an 8K bit-map screen (and 1 K
of color data) for you to create graphics.

40 GRAPHIC 1,1

The second 1 in this command clears the bit-map screen. If you do
not want to clear the screen, change the second 1 to 0 (or omit it
complelely).

NOTE: If you are in bit·map mode and are unable to return to
the text screen, press the RUN/STOP and RESTORE keys at the
same time, or press the ESC key followed by X, to return to the

100 USING C128 MODE-Color, Animation and Spri te Graphics Statements

-

aO-column screen. Even though you can only display graphics
with the VIC (40-column) chip, you can still write graphics pro­
grams in aO-column format. If you have the Commodore 1902
dual monitor and you want to view your graphics program while
it is running, you must select the 40-column output by switching
the slide switch on the monitor to 40-column output.

Displaying Graphics on the Screen

So far, you have selected a graphics mode and the colors you want.
Now you can start displaying graphics on the screen. Start with a
ci rcle.

Drawing a
Clre-Ie-The
CIRCLE
Command

To draw a circle, use the CIRCLE statement as
follows:

60 CIRCLE 1,150,130,40,40

This displays a circle in the center of the screen. The CIRCLE state­
ment has nine parameters you can select to achieve various types of
circles and geometric shapes. For example, by changing the num­
bers in the CIRCLE statement in line 60 you can obtain different size
circles or variations in the shape (e.g .. an oval). The CIRCLE state­
ment adds power and versatili ty in programming Commodore 128
graphics in BAStC. The meaning of the numbers in the CIRCLE state­
ment is explained under Ihe CIRCLE lisling in Chapler V, BASIC 7.0
Encyclopedia.

On your Commodore 128 screen, the point where X = 0 and Y = a is
at the top left corner of the screen. and is referred to as the HOME
position. In standard geometry. however, the point where X and Y
both equal 0 is the bottom left corner of a graph. Figure 6-6 shows
the arrangement of the X (horizontal) and Y (vertical) screen coordi­
nates and the four points at the corners of the C128 screen.

X Coordinate
0,0 319,0

Y Coordinate

0,199 319,199

Figure 6·6. Arrangement of X and Y Coordinates

101 USING C128 MODE-Color, Animation and Sprite Graphics Statements

Here's what the numbers mean:

• 1 is the color source (in this case the foreground)
• 20 is the starting X (horizontal) coordinate
• 180 is the starting Y (vertic at) coordinate
• 280 is the ending horizontal coordinate
• 180 is the ending vertical screen coordinate.

Drawing a Box­
Th.SOX
Command

Now try a box. To draw a box, type:

80 BOX1,20,100,8O,160,90,1

ThiS draws a solid box to the left of the circle. To find out what the
numbers in the box statement mean, consult Chapter V, BASIC 7.0
Encyclopedia. The BOX statement has seven parameters you can
select and modify to produce different types of boxes. Change the
foreground color and draw the outline of a box to the right of the CIR·
CLE with these statements:

90 COLOR1 ,9:REM CHANGE FOREGROUND COLOR
100 BOX1 ,22O,1oo,280,160,90,O

Experiment with the BOX statement to produce different variations
of rectangles and boxes.

Drawing Line.,
Polnt.and
Other Shape.­
Th.DRAW
Command

You now know how to select graphic modes and
colors and how to display circles and boxes on
the screen. Another graphics statement, DRAW,
lets you draw lines on the screen just as you
would with a pencil and a piece of paper. The
following statement draws a line below the
boxes and circle.

120 DRAW 1,20,180 TO 280,180

To erase a drawn line, change the source (1) in the DRAW statement
to O. The line is drawn with the background color which erases the
line. Try using different coordinates and other sources to become
accustomed to the DRAW statement.

The DRAW statement can take another form that allows you to
DRAW a line, change direction and then DRAW another line, so the
lines are continuous. For example, try this statement:

130 DRAW 1,10,20 TO 300,20 TO 150,80 TO 10,20

This statement DRAWs a triangte on the top of the screen. The four
pairs of numbers represent the X and Y coordinates for the three
points of the triangles. Notice the first and last coordinates are the

102 USING C128 MODE-Color. Animation and Sprite Graphics Statements

same, since you must finish drawing the triangle on the same point
you started. This form of draw statement gives you the power to
DRAW almost any geometric shape, such as trapezoids, parallelo­
grams and polygons.

The DRAW statement also has a third form.

You can DRAW one point at a time by specifying the starting X and Y
values as follows:

150 DRAW 1,155,175

This statement DRAWS a dot below the CIRCLE.

As you can see, the DRAW statement has versatile features which
give you the capability to create shapes,lines points and a virtually
unlimited number of computer drawings on your screen.

PAINTing The DRAW statement allows you to outline
Outlined areas on the screen. What if you want to fill
Areas-The areas within your drawn lines? That's where the
PAINT Command PAINT statement comes in. The PAINT state-

ment does exactly what the name implies-it
fills in, or PAINTs, outlined areas with color. Just
as a painter covers a canvas with paint, the
PAINT statement covers the areas of the screen
with any of the 16 colors. For example, type:

160 PAINT 1,150,97

Line 160 PAINTS the circle you have drawn in line SO. The PAINT
statement fills a defined area until a specified boundary is detected
according to which source is indicated. When the Commodore 128
finishes PAINTing, it leaves the pixel cursor at the point where PAINT­
ing began (in this case, at point 150,97).

Here are two more PAINT statements:

180 PAINT 1,50,25
200 PAINT 1,225,125

Line 180 PAINTS the triangle and line 200 PAINTS the empty box .

• IMPORTANT PAINTING TIP: II you choose a slarling poinl in
your PAINT statement which is already colored from the same
source, the Commodore 128 will not PAINT that area. You must
choose a slarting point which is entirety inside the boundary of
1he shape you want to PAINT. The starting point cannot be on

103 USING C126 MODE-Color, Animation and Sprite Graphics Statements

the boundary line of a pixel that is colored from the same
source. The source numbers of the screen coordinate and the
coordinate specified in the PAINT command must be different.

Displaying Characters on a Bit Mapped Screen-The
CHAR Command

So far, the example program has operated in standard bit map mode.
Bit map mode uses a completely different area of memory to store
the screen data than text mode (the mode in which you enter pro­
grams and text). If you enter bit map mode. and try to type charac·
ters onto the screen, nothing happens. This is because the charac­
ters you are typing are being displayed on the text screen and you
are looking at the bit map screen. Sometimes it is necessary to dis­
play characters on the bit map screen, when you are creating and
plotting charts and graphs. The CHAR command is designed espe·
cially for this purpose. To display standard characters on a bit map
screen, use the CHAR statement as follows:

220 CHAR 1, 11 ,24,"GRAPHICS EXAMPLE"

This displays Ihe text "GRAPHICS EXAMPLE" starting at line 25,
column 12. The CHAR command can also be used in text mode,
however it is primarily designed for the bit map screen.

Changing the Size of Graphic Images-The
SCALE Command

The Commodore 128 has another graphics statement which offers
additional power to your graphics system. The SCALE statement
offers the ability to scale up (enlarge) or scale down (reduce) the size
of graphic images on your screen. The SCALE statement also
accomplishes another task, which can be explained as follows.

In standard bit-map mode, the 40-column screen has 320 horizontal
coordinates and 200 vertical coordinates. In mul ticolor bit map

104 USING C128 MODE-Color, Animation and Sprite Graphics Statements

mode, the 40-column screen has only half the horizontal resolution
of standard bit map mode, that is, 160 by 200. This reduction in reso­
lution is compensated for by the additional capability of using one
additional color for a total of three colors, within an 8 by 8 character
matrix. Standard bit map mode can only display two colors within an
8 by 8 character matrix.

When you use the SCALE statement, both standard bit map and mul­
ticolor bit map modes have coordinates which are proportional to
one another. The scale ranges from 0 through a maximum of 1023
horizontal coordinates. This is true regardless of whether you are in
standard bit-map or multicolor mode.

To SCALE your screen, type:

SCALE 1, x, Y

and the screen coordinates range from 0 to 65535 whether you are
in standard or multicolor high· res mode. To turn off SCALEing, type:

SCALE 0

and the coordinates return to their normal values.

105 USING C128 MODE-Color, Animation and Sprite Graphics Statements

Creating a Sample Graphics Program

So far, you have learned several graphics statements. Now tie the
program together and see how the statements work at the same
time. Here's how the program looks now. The color statements in
lines 70, 110, 140, 170, 190 and 210 are added to display each object
in a different color.

10 CO LOR 0 , 1 : REM SELECT BKGRNO COLOR
20 COLOR I . J , REH SELECT FORGRNO COLOR
30 COLOR 4, 1 : REM SELECT BORDER COLOR
4 0 GRAPHIC l , l : REM SELECT STND HI RES
60 CIRCLE . ISO . IJO .4 0 . 40 , REM CIRCLE
70 COLOR 1 , 6 : REM CHANGE FORGRND COLOR
SO BOx . 20 . 100 . S0 . 160 . 90 . I , REM BOX
90 COLOR 1 , 9 : REM CHANGE FORGRND COLOR
10 0 BOx, 220 , 100 , 2BO , 160 , 90 , 0 : REM BOX
1 10 COLOR 1 , B : REM CHANGE FORGRND COLOR
120 ORAl< 1. 20 . ISO TO 2S0 . ISO , REH ORAl< LINE
I JO DRAW 1 . 10 . 20 TO JOO . 20 TOISO . SO TO 10 . 20 , REM DRAW TRIANGLE
140 COLOR 1, 15 : REM CHANGE FORGRND COLOR
150 DRAW 1,1 50 , 17S : REM DRAW 1 POINT
160 PAINT 1 , 150 , 97 : REM PAINT CIRCLE
170 COLOR 1 , 5 : REM CHANGE FORGRND COLOR
18 0 PAINT I , SO , 2S : REM PA I NT TRIANGLE
190 COLOR 1 , 7 : REM CHANGE FORGRND COLOR
200 PAINT 1 . 22S . 12S , REM PAINT BOX
210 COLOR 1 .1 1 , REM CHANGE FORGRNO COLOR
220 CHAR , 1 1, 24 , "GRA PHICS EXAMPLE " : REM DISPLAY TEXT
2JO FOR I= ITOSOOO , NEXT , GRAPHIC O. I , COLOR 1 . 2

Here's what the program does:

• Lines 10 through 30 select a COLOR for the background, fore·
ground and border, respectively.

• Line 40 chooses a graphic mode.
• Line 60 displays a CIRCLE.
• Line 80 DRAWs a colored·in BOX.
• Line 100 DRAWs the outline of a box.
• Line 120 DRAWs a straight line at the bottom of the screen.
• Line 130 DRAWs a triangle.
• Line 150 DRAWs a single point below the CIRCLE.
• Line 160 PAINTs the circle.
• Line 180 PAINTs the triangle.
• Line 200 PAINTs the emply box.

106 USING C128 MODE-Color, Animation and SprUe Graphics Statements

• Une 220 prints the CHARacters "GRAPHICS EXAMPLE" at
the bottom of the screen .

• Line 230 delays the program so you can watch the graphics
on the screen, swi tches back to text mode and colors the
characters black.

If you want the graphics to remain on the screen, omit the GRAPHIC
statement in line 230.

Here are some additional example programs using the graphics
statements you just learned.

10 COLOR 0,1
20 COLOR 1,8
30 COLOR 4,1
40 GRAPHICl,l
SO FORI-80TQ240 STEPIO
60 CIRCLEl,I , lOO,75,75
70 NEXT
80 COLOR 1,5
90 FORI-80T0250 STEPIO
100 CIRCLEl,J , lCe,SO,so
110 NEXT
120 COLOR 1,7
130 FORI=50T0280 STEPIO
140 CIRCLEl , I,lOO,25,25
ISO NEXT
160 FORI-ITQ7500:NEXT:GRAPHICO,l:COLORl,2

10 GRAPHIC 1,1
20 COLORO , l
30 COLOR4,1
40 FORI=IT050
50 Z=INT(((RND(I))*16)+I)* 1
60 COLORl,z
70 X=INT(((RND(I))*30)+I)*10
80 Y=INT(((RND(I))*20)+I) *1 0
90 U=INT(((RND(I))*30)+I) *10
100 V=INT(((RND(I))*20)+l) * 10
110 DRAW,X,Y TO U,V
120 NEXT
130 SCNCLR
140 GOT040

107 USING C128 MODE-Color. Animation and SprileGraphics Statements

10 COLOR4,7:COLORO,7:COLORl,l
20 GRAPHICl, 1
30 PORI- 400TOI STEP -5
40 DRAW 1,150,100 TO 1,1
50 NEXT
60 PORI- 1TOCOO STEP 5
70 DRAW 1,150,100 TO 1,1
80 NEXT
90 PORI- COTO 320 STEP 5
100 DRAW 1,150,100 TO 1,320
110 NEXT
120 PORI- 320T030STEP -5
130 DRAW 1,150,100 TO 320,1
140 NEXT
150 PORI-lT07S00:NEXT:GRAPHICO,I:COLORl,1

Type the examples into your computer. RUN and SAVE them for
fu ture reference. One of the best ways to learn programming is to
study program examples and see how the statements perform their
functions. You 'll soon be able to use graphics statements to create
impressive graphics with your Commodore 128.

If you need more information on any BASIC statement or command,
consult the Chapter V, BASIC 7.0 Encyclopedia.

You now have a set of graphic commands thai allow you to create an
almost unlimited number of graphics displays. But Commodore 128
graphics abilities do not end here. The Commodore 128 has another
set of statements, known as SPRITE graphics, which make the crea­
tion and control of graphic images fast, easy and sophisticated.
These high-level statements allow you to create sprites-moveable
graphic objects-the C128 has its own built·in SPRite DEFinition
ability. These statements represent the new technology for creating
and controlling sprites. Read the next section and take your fi rst step
in learning computer animation.

108 USING C128 MODE-Color, Animation and Sprite Graphics Statements

Sprites:
Programmable,
Movable Object
Blocks

You already have learned about some of the Commodore 128's
exceptional graphics capabilities. You've learned how to use the first
set of high-level graphics statements to draw circles, boxes, lines
and dots. You have alsb learned how to color the screen, switch
graphic modes. paint objects on the screen and scale them. Now
it's time to take the next step in graphics programming-sprite
animation.

If you have worked with the Commodore 64, you already know some­
thing about sprites. For those of you who are not familiar with the
subject, a sprite is a movable object that you can form into any
shape or image. You can color sprites in t 6 colors. Sprites can even
be multi color. The best part is that you can move them on the
screen. Sprites open the door to computer animation.

Here is the set of statements you will learn about in this section:

MOVSPR
SPRDEF
SPRITE
SPRSAV
SSHAPE

Sprite Creation

The first step in programming sprites is designing the way the sprite
looks. For example, suppose you want to design a rocket ship or a
racing car sprite. Before you can color or move the sprite. you must
first design the image. In C128 mode, you can create sprites in these
three ways:

1. Using the new SPRITE statements within a program
2. Using SPRite DEFinition mode (SPRDEF)
3. Using the same method as the Commodore 64.

Using Sprite Statements In a Program

This method uses built-in statements so you don't have to use any
aids outside your program to deSign your sprite as the other two
methods require. This method uses some of the graphics statements
you learned in the previous section. Here's the general procedure.
The details will be added as you progress.

109 USING C128 MODE-Color, Animation and Sprite GraphiCS Statements

1. Draw a picture with the graphics statements you learned in
Ihe lasl seclion. such as DRAW. CIRCLE. BOX and PAINT
Make the dimensions of the picture 24 pixels wide by 21 pix­
els tall in standard bit map mode or 12 pixels wide by 21 tall in
multicolor bit map mode.

2. Use the SSHAPE statement to store the picture data into a
string variable.

3. Transfer the picture data from the string variable into a sprite
wilh Ihe SPRSAV slalement.

4. Turn on the sprite, color it, select either standard or multi·
color mode and expand it, all with the SPRITE statement.

5. Move the sprite with the MOVSPR statement.

Drawing the Sprite Image

Here are the actual statements that perform the sprite operations.
When you are finished with this section, you will have written your
first sprite program. You'll be able to RUN the program as much as
you like, and SAVE if for future reference.

The first step is to draw a picture (24 by 21 pixels) on the screen
using DRAW, CIRCLE, BOX or PAINT. This example is performed in
standard bit map mode, using a black background. Here's the state­
ments that set the graphic mode and color the screen background
black.

S COLOR 0,1 :REM COLOR BACKGROUND BLACK
10 GRAPHIC 1,1 :REM SET STND BIT MAP MODE

The following statements DRAW a picture of a racing car in the
upper-left corner of the screen. You already learned these state­
ments in the last section.

5 COLOR O, l : COLOR 4,1
10 GRAPHIC 1,1
15 BOX 1 , 2 , 2,45,45
20 DRAW 1 , 17,10 TO 28,10 TO
22 DRAW 1 , 11,10 TO 15 ,1 0 TO
24 DRAW 1,30,10 TO 34 , 10 TO
26 DRAW 1,11,20 TO 15 , 20 TO
28 DRAW 1 ,]0,20 TO]4 , 20 TO
]0 DRAW 1,26,28 TO 19,28
32 BOX 1,20,14,26,18,90,1

26 , 30
15,18
34 , 18
15 , 28
34,28

TO 19,30 TO
TO 11 , 18 TO
TO 30,18 TO
TO 11,28 TO
TO 30 , 28 TO

35 BOX 1 , 150,35,195,40,90,1 : REM STREET
37 BOX 1 , 150 , 135,195,140,90,I : REM STREET
40 BOX 1,150,215,195,220,90,I:REM STRT

17,10 : REM CAR BODY
11,10: REM UP LEFT WHEEL
30,10 : REM RGHT WHEEL
11,20 : REM LOW LFT WHEEL
30,20 : REM LO RGHT WHEEL

42 DRAW 1,50,180 TO 300,180:DRAW 1,50,180
43 DRAN 1,50,190 TO 300,190

TO 50,J90:DRAW 1,300,180 TO 300 , 190

44 CHAR l , 18 , 23 ," FINISH "

110 USING C128 MODE-Color, Animalion and Spri te Graphics Statements

-

RUN the program. You have just drawn a white racing car, enclosed
in a box, in the upper-left corner of the screen, You have also drawn
a raceway with a finish line at the bottom of the screen. At this
point , the racing car is still only a stationary picture. The car isn't
a sprite yet, but you have just completed the first step in sprite
programming-creating the image.

Storing the Sprite Data with SSHAPE

The next step is to save the picture into a text string. Here's the
SSHAPE statement that does it:

45 SSHAPE AS,10,11 ,34,31 :REM SAVE THE PtCTURE IN A
STRING

The SSHAPE command stores the screen image (bit pattern) into a
string variable for later processing, according to the specified
screen coordinates.

The numbers 10, 11, 34, 31 are the coordinates of the picture, You
must position the coordinates in the correct place or the SSHAPE
statement can't store your picture data correctly into the string varia­
ble A$, If you position the SSHAPE statement on an empty screen
location, the data string is empty. When you later transfer it into a
sprite, you 'll realize there is no data present. Make sure you position
the SSHAPE statement directly on the correct coordinate. Also, be
sure to create the picture with the dimensions 24 pixels wide by 21
pixels tall , the size of a single sprite.

The SSHAPE statement transfers the picture of the racing car into a
data string that the computer interprets as picture data. The data
string, A$, stores a string of zeroes and ones in the computer's memo
ory that make up the picture on the screen. As in all computer graph­
ics, the computer has a way it can represent visual graphics with bits
in its memory. Each dot on the screen, called a pixel , has a bit in the
computer's memory that controls it. In standard bit-map mode, if the
bit in memory is equal to a 1 (on), then the pixel on the screen is
turned on. 11 the controlling bit in memory is equal to a a (off), then
the pixel is turned off,

111 USING C128 MODE-COlor, Animation and Sprite Graphics Sl atements

11 2

Saving the Picture Data In a Sprite

Your picture is now stored in a string. The next step is to transfer the
picture data from the data string (A$) into the sprite data area so you
can turn it on and animate it. The statement that does this is SPRSAV.
Here are the statements:

50 SPRSAV A$,1:REM STORE DATA STRING IN SPRITE 1
55 SPRSAV A$,2:REM STORE DATA STRING IN SPRITE 2

Your picture data is transferred into sprite 1 and sprite 2. 80th sprites
have the same data, so they look exactly the same. You can't see
the sprites yet , because you have to turn them on.

Turning on Sprites

The SPRITE statement turns on a specific sprite (numbered 1
through 8), colors it, specifies its screen priority, expands the sprite 's
size and determines the type of sprite display. The screen priority
refers to whether the sprite passes in front of or behind the objects
on the screen. Sprites can be expanded to twice their original size in
either the horizontal or vertical directions. The type of sprite display
determines whether the sprite is a standard bit map sprite, or a mul­
ticolor bit mapped sprite. Here are the two statements that turn on
sprites 1 and 2.

60 SPRITE 1,1,7,O,O,O,O:REM TURN ON SPR 1
65 SPRITE 2,1,3,O,O,O,O:REM TURN ON SPR 2

Here's what each of the numbers in the SPRITE statements mean:
SPRITE #,O,C,P.X,V,M

#- Sprite number (1 through 8)
0 - Turn On(O= 1)orOff (0=O)
C-Color(1 through 16)
p- Priority-If P = 0, sprite is in front of objects on the screen

If P = 1, sprite is in back of objects on the screen
X- If X = 1, expand sprite in horizontal (X) direction

If X = 0, sprite is normal horizontal size
y - If Y = 1, expand sprite in vertical (Y) direction

If Y = 0, sprite is normal vertical size
M-U M = 1, sprite is multicolor

If M = 0, sprite is standard

As you can see, the SPRITE statement is powerful, giving you control '--
over many sprite qualities.

USING C128 MODE-Color, Animation and Sprile Graphics St atemen ts

Moving Sprites with MOVSPR

Now that your sprite is on the screen, all you have to do is move it.
The MOVSPR statement controls the motion of a sprite and allows
you to animate it on the screen. The MOVSPR statement can be used
in two ways. First. the MOVSPR statement can place a sprite at an
absolute location on the screen, using vertical and horizontal coordi­
nates. Add the following statements to your program:

70 MOVSPR 1,240,70:REM POSITION SPRITE 1-X= 240, Y = 70
80 MOVSPR 2,120,70:REM POSITION SPRITE 2-X = 120, Y = 70

Une 70 positions sprite 1 at sprite coordinate 240,70. Une 80 places
sprite 2 at sprite coordinate 120,70. You can also use the MOVSPR
statement to move sprites relative to their original positions. For
example, place sprites 1 and 2 at the coordinates as in lines 70 and
80. You want to move them from their original locations to another
location on the screen. Use the following statements to move sprites
along a specific route on the screen:

85 MOVSPR 1,180 # 6:REM MOVE SPRITE 1 FROM THE TOP
TO TH E BOTTOM
87 MOVSPR 2,180 # 7:REM MOVE SPRITE 2 FROM THE TOP
TO TH E BOTTOM

The first number in this statement is the sprite number. The second
number is the direction expressed as the number of degrees to move
in the clockwise direction, relative to the original position of the
sprite. The pound sign (f/) signifies that the sprite is moved at the
specified angle and speed relative to a starting position, instead of
an absolute location, as in lines 70 and 80. The final number speci­
fies the speed in which the sprite moves along its route on the
screen, which ranges from ° through 15.

The MOVSPR command has two alternative forms. See Chapter V,
BASIC 7.0 Encyclopedia for Ihese nolalions.

Sprites use an entirely different coordinate plane than bit-map coor·
dinates. The bit-map coordinates range from points 0,0 (the top left
corner) to 319,199 (bottom right corner). The visible sprite coordi­
nates start at point 50,24 and end at point 250,344. The rest of the
sprite coordinates are off the screen and are not visible, but the
sprite still moves according to them. The OFF·screen locations allow
sprites to move smoothly onto and off of the screen. Figure 6-7 illus­
trates the sprite coordinate plane and the visible sprite positions.

'13 USING C128 MODE-Color, Animation and Sprite Graphics Statements

• ,. '''~ ,

VISIBLE VIEWING AREA

<10 COlU MN S
n~ows

Figure 6·7. Visible Sprite Coordinates

Now RUN the entire program with all the steps included. You have
just written your first sprite program. You have created a raceway
with two racing cars. Try adding more cars and more objects on the
screen. Experiment by drawing other sprites and include them in the
raceway. You are now well on the way in sprite programming. Use
your imagination and think of other scenes and objects you can
animate. Soon you can create all kinds of animated computer
"movies,"

To stop the sprites, press RUN/STOP and RESTORE al the same
time.

114 USING C128 MOOE-Color, Animation and Sprite Graphics Statements

- •

Creating a Sprite Program

You now have a working sprite program example. Here's the com­
plete program listing:

5 COLOR O,l:COLOR 4,1
10 GRAPHIC 1. 1
IS BOX 1,2,2,45,45
20 ORAW 1,17,10 TO 28,10 TO
22 DRAW 1,11,10 TO 15 , 10 TO
24 DRAW 1,30,10 TO 34,10 TO
26 DRAW 1,11,20 TO 15,20 TO
28 DRAW 1,30.20 TO 34,2 0 TO
30 DRAW 1,26,28 to 19.28
32 BOX 1,20,14.26,18.90.1

26 , 30 TO
15,18 TO
34 , 18 TO
15,28 TO
34,28 TO

19.30 TO
11.18 TO
)0,18 TO
11.28 TO
30.28 TO

35 BOx 1,150,35.195,40,90.1:REM STREET
31 BOX 1,150,135,195,140,90,l:REM STREET
40 BOX 1 , 150,215,195,220 , 90,1:REM STRT

17,10 :REM CAR BODY
11,10: REM UP LEFT WHEEL
)O,IO:REM RGHT WHEEL
11,20:REM LOW LPT WHEEL
30 ,20:REM LO RGHT WHEEL

42 DRAW 1.50,180 TO 300,180:0RAW 1,50,180 TO 50,190:0RAW 1,300,180 TO 300,190
43 DRAW 1,50 ,190 TO)00,190
44 CHAR 1 ,1 8,23,"FINISH:"
45 SSHAPE AS,II,IO,34,31:REM SAVE SPR IN AS
50 SPRSAV AS,I:REM SPRO DATA
55 SPRSAV AS. 2 : REM SPR1 DATA
60 SPRITE 1,I,7,O,O,O,O:REM SPRI ATTRIB
65 SPRITE 2.1,3,O,O,O,O:REM SPR2 ATTRIB
70 HOVSPR 1,2 40.70
80 HOVSPR 2,120,70
85 MOVSPR 1,180 • 6
90 HOVSPR 2,180 I 7
95 FOR I-1T05000 :NEXT
99 GRAPHIC 0,1

Here's what the program does:

• Line 5 COLORs the screen black.
• Line 10 sets standard high-resolution GRAPHIC mode.
• Line 15 DRAWs a box in the top-left corner of the screen.
• Lines 20 through 32 DRAW the racing car.
• Lines 35 through 44 DRAW the raCing lanes and a finish line.
• Line 45 transfers the picture data from the racing car into a

string variable.
• Lines 50 and 55 transfer the contents of the string variable

into sprites 1 and 2.
• Lines 60 and 65 turn on sprites 1 and 2.
• Lines 70 and 80 position the sprites at the top of the screen.
• Lines 85 and 87 animate the sprites as though the two cars

are racing each other across the finish line.

115 USING C128 MODE-Color, Animation and Sprite Graphics Stalements

In this section, you have learned how to create spri tes, using the
built-in C128 graphics statements such as DRAW and BOX. You
learned how to control the sprites, using the Commodore 128 sprite
statements. The Commodore 128 has two other ways of creating
sprites. The first is with the built-in SPRite DEFinition ability, as
described in the following paragraphs. The other method of creating
sprites is the same as that used for the Commodore 64: see the C64
Programmer 's Reference Guide for details on this sprite-creation
technique.

Sprite Definition Mode-The SPRDEF Command

The Commodore 128 has a built-in SPRite DEFinition mode which
enables you to create sprites on your Commodore 128. You may be
familiar with the Commodore 64 method of creating sprites, in which
you required to either have an additional sprite editor, or design a
sprite on a piece of graph paper and then READ in the coded sprite
DATA and POKE it into an available sprite block. Wi th the new Com­
modore 128 sprite definition command SPRDEF, you can construct
and edit your own sprites in a special sprite work area.

To enter SPRDEF mode, type:

SPRDEF

and press RETURN. The Commodore 128 displays a sprite grid on
the screen. In addition, the computer displays the prompt:

SPRITE NUMBER?

Enter a number between 1 and 8. The computer fills the grid and
displays the corresponding sprite in the upper right corner of the
screen. From now on, we will refer to the sprite grid as the work area.
The work area has the dimensions of 24 characters wide by 21 char­
acters tall. Each character position wi thin the work area corres­
ponds to 1 pixel wi thin the sprite, since a sprite is 24 pixels wide by
21 pixels tall. While within the work area in SPRDEF mode, you have
several editing commands available to you. Here's a summary of the
commands on the following page:

116 USING C128 MODE-Color, Animation and Spnle Graphics SlalemenlS

Sprite Definition Mode Command Summary

CLR key-Erases the entire work area
M key-Turns on/off multicolor sprite
CTRL l-S-Selects sprite foreground color l-S
(I l-S-Selects sprite foreground color 9-16
1 key-Turns on pixels in the background color
2 key-Turns on pixels in the foreground color
3 key-Turns on areas in multicolorl
4 key-Turns on areas in multicolor2
A key-Turns on/off automatic cursor movement
CRSR keys-Moves the cursor (+) within the work area
RETURN-moves cursor to the start of the next line
HOME key-Moves cursor to the top left corner of work area.
X key-Expands sprite horizontally
Y key-Expands sprite vertically
Shift RETURN-Saves sprite from work area and returns to
SPRITE NUMBER prompl
C key-copies one sprite to another
STOP key-Turns off displayed sprite and returns to SPRITE
NUMBER prompt without changing the sprite
RETURN key-tat SPRITE NUMBER prompt) ExilS SPRDEF
mode

Sprite Creation Procedure In SPRite DEFinition Mode

Here's the general procedure to create a sprite in SPRite DEFinition
mode:

1. Clear the work area by pressing the shill and CLRIHOME keys at
the same time.

2. If you want a multicolor sprite, press the M key and an additional
cursor appears next to the original one. Two cursors appear
since multicolor mode actually turns on two pixels for everyone
in standard sprite mode. This is why multicolor mode is only half
the horizontal resolution of standard high-res mode.

3. Select a color for your sprite. For colors between 1 and 8, hold
down the CONTROL key and press a key between 1 and 8. To
select color codes between 9 and 16, hold down the Commo­
dore (e.) key and press a key between 1 and 8.

4. Now you are ready to start creating the shape of your sprite. The
numbered keys 1 through 4 fill in the sprite and give it shape. For
a single color sprite, use the 2 key to fill a character position
within the work area. Press the 1 key to erase what you have
drawn with the 2 key. If you want to fill one character position at a

117 USING C128 MODE-ColOr, Animation and S~r ite Graphics Statements

time, press the A key. Now you have to move the cursor manually
with the cursor keys. If you want the cursor to move automati­
cally to the right white you hotd it down, do not press the A key
since it is already set to automatic cursor movement. As you fill
in a character position within the work area, you can see the
corresponding pixel in the displayed sprite turn on. Sprite editing
occurs as soon as you edit the work area.

In multicolor mode, the 3 key fills two character positions in the
work area with the multicolor 1 color, the 4 key fills two character
positions with the multicolo(2.

You can turn off (color the pixel in the background color) filled
areas within the work area with the 1 key. In multicolo(mode, the
1 key turns off two character positions at a time.

5. While constructing your sprite, you can move freely in the work
area without turning on or off any pixels using the RETURN,
HOME and cursor keys.

6. At any time, you may expand your sprite in both the vertical and
horizontal directions. To expand vertically, press the Y key. To
expand horizontally, press the X key. To return to the normal size
sprite display, press the X or Y key again.

When a key turns on AND off of the same control, it is referred to
as toggting, so the X and Y keys toggle the vertical and horizontal
expansion of the sprite.

7. When you are finshed creating your sprite and are happy with the
way it tooks, save it by holding down the SHIFT key and pressing
the RETURN key. The Commodore 128 SAVEs the sprite data in
the appropriate sprite storage area. The displayed sprite in the
upper right corner of the screen IS turned off and control is
returned to the SPRITE NUMBER prompt. If you want to create
another sprite enter another sprite number and edit the new
sprite just as you did with the first one. If you want to display the
original sprite in the work area again, enter the original sprite
number. If you want to exit SPRITE DEFinition mode, simply
press RETURN at the SPRITE NUMBER prompt.

8. You can copy one sprite into another with the "C" key.
9. If you do not want to SAVE your sprite. press the STOP key. The

Commodore 128 turns off the displayed sprite and returns to the
SPRITE NUMBER prompt.

1 O. To EXIT SPRite DEFinition mode, press the RETURN key while
the SPRITE NUMBER prompt is displayed on the screen when no

116 USING C128 MODE-Color, Anim<l tion and Spri te GraphiCS Statemen ts

sprite number follows it. You can exit under either 01 the follow­
ing conditions:

Immediatety after you SAVE your sprite (shift RETURN),
Immediately after you press the STOP key

Once you have created a sprite and have exited SPRite DEFinition
mode, your sprite data is stored in the appropriate sprite storage
area in the Commodore 128's memory. Since you are now back in
the control 01 the BASIC language, you have to turn on your sprite in
order to see it on the screen. To turn it on again, use the SPRITE
command you learned previously. For example, you created sprite 1
in SPRDEF mode. To turn it on in BASIC. color it blue and expand it in
both the X and Y directions enter th iS command:

SPRITE 1,1,7,0,1,1,0

Now use the MOVSPR command to move it at a gO-degree angle at a
speed of 5, as follows:

MOVSPR 1, 90 # 5

Now you know all about SPRDEF mode. First, create the sprite, save
the sprite data and exitlrom SPRDEF mode to BASIC. Next turn on
your sprite with the SPRITE command. Move it with the MOVSPR
command. When you ' re finshed programming, SAVE your sprite data
in a binary file with the BSAVE command as follows:

BSAVE "filename", BO, P3584 TO 4096

When you want to use the sprite data again from disk, load the previ­
ously BSAVEd binary fite with the BLOAD command as follows:

BLOAD "filename"(, BO, P3584 TO P4096(

The portion in brackets is optional. BLOAD loads data into the
address from which it was saved.

Now you know the new methods lor creating sprites: 1) SSHAPE.
SPRSAV. SPRITE. MOVSPR. 2) SPRDEF MODE. Experiment with all
these methods and master sprite animation.

See Storing Sprite Data in Binary Files later in this section for
more information.

Adjoining Sprites

You have learned how to create, color, turn on and animate a sprite.
An occasion may arise when you want to create a picture that is too

119 USING C128 MODE-Color. Animation and Spri te Graphics Statements

detailed or too large to fit into a single sprite. In this case, you can
join two or more sprites so the picture is larger and more deta iled
than with a single sprite. By joining sprites, each one can move inde·
pendently of one another. This gives you much more control over
animation than a single sprite.

This section includes an example using two adjoining sprites. Here's
the general procedure (algorithm) for writing a program with two or
more adjoining sprites.

1. Draw a picture on the screen with Commodore 128 graphics
statements, such as DRAW, BOX and PAINT, just as you did in the
raceway program in the last section. This time, make the picture
twice as large as a single sprite with the dimensions 48 pixels
wide by 21 pixels tall.

2. Use two SSHAPE statements to store the sprites into two sepa·
rate data strings. Position the first SSHAPE statement coordinates
over the 24 by 21 pixel area of the first half of the picture you drew.
Then posit ion the second SSHAPE statement coordinates over
the second 24 by 21 pixel area. Make sure you store each half of
the picture data in a different string. For example, the first
SSHAPE statement stores the first half of the picture into A$, and
the second SSHAPE statement stores the second half of the pic­
ture in S$.

3. Transfer the picture data from each data string into a separate
sprite with the SPRSAV statement.

4. Turn on each sprite with the SPRITE statement.
5. Position the sprites so the beginning of one sprite starts at the

pixel next to where the first sprite ends. This is the step that
actuailly joins the sprites. For example, draw a picture 48 by 42
pixels. Position the first sprite (1 , for example) at location 10,10
with this statement:

100 MOVSPR 1,10,10

,20 USING C128 MODE-Color, Animation and Sprite Graphics Statements

where the first number is the sprite number, the second number is
the horizontal (X) coordinate and the third number is the vertical
(Y) coordinate. Position the second sprite 24 pixels to the right 01
sprite 1 with this statement:

200 MOVSPR 2,34,10

At this point, the two sprites are displayed directly next to each
other. They look exactly like the picture you drew in the beginning
of the program. using the DRAW. BOX and PAINT statements.

6. Now you can move the sprites any way you like, again using the
MOVSPR statement. You can move them together along the same
path or in different directions. As you learned in the last section,
the MOVSPR statement allows you to move sprites to a specific
location on the screen, or to a location relative to the sprite's origi­
nal position.

The following program is an example of adjoining sprites. The pro­
gram creates an outer space environment. It draws stars, a planet
and a spacecraft simi liar to Apollo. The spacecraft is drawn, then
stored into two data strings, A$ and B$. The front of the space·
ship, the capsule, is stored in sprite 1. The back half of the space­
ship, the retro rocket , is stored in sprite 2. The spacecraft flies
slowly across the screen twice. Since it is traveling so slowly and
is very far from Earth, it needs to be launched earthward with the
retro rockets. After the second trip across the screen, the retro
rockets fire and propel the capsule safely toward Earth.

Here's the program listing:

121 USING C128 MODE-Color, Animation and Sprite Graphies Statements

5 COLOR ~,l:COLOR O,l : COLOR l,2:REM SELECT aLACK BORDER' BKGRND, WHITE FRGHD
10 GRAPHIC 1,1 :REM SET HI RES ~IODE
17 FOR I=ITOl;O
18 X-INT(RND(l) ·3 20)~1 : REM DRAW SThRS
19 Y-I~TIRND(I)·20~)~I:R&M DRAW STARS
21 DRAW l,X,Y:NEXT :RtM DRAW STARS
22 ecx O,O,5,70,40,,1:REM CLEAR BOX
23 BOX l ,l,5,70,40 : REM BOX-IN SPACBSHIP
24 COLOR l,8:CIRCLE l,190 . 90 , 35 , 25 :PAINT 1,190,95:RE~1 DRAW, PhINT PLANf;T
25 CIRCLE 1,190,90,65 , 10 :CIRCLJ,; l,190,93,65,lO~CIRCLE 1,190,95,65,lC : COLOR 0,1
26 DRAW 1,10,17 '1'0 16,17 TO 32 ,10 TO 33 ,20 '1'0 J2,3C '1'0 16 , 23 TO 10,23 TO le,17
28 nitAI.,. 1,1 g, 24 TO 20,21 TO n, 25 TO 26,28: REM BOT'l'OM WINOOW
35 DRAW 1,20,19 TO 20 ,1 7 TO ~9,13 TO 30 ,te TO 28 ,2 3 TO 20,19:RE'JoI '1'OP I.:NOQN
38 PAINT 1,13,20,REM PAINT SPACESHIP
40 DRAW 1,34,10 TO 36 ,20 TO 34,30 TO 45,30 TO 46,20 TO 45,10 TO 34 ,10:REM SPI
42 CRAIo 1,45 ,10 TO ~l ,12 TO 57 ,1(; TO 57 ,1 7 TO 51 , 15 '::0 '-6,17:REl~ ENGl
43 DR~W 1,46,22 TO 51,24 TO 57,22 TO 57,29 TO 51 , 27 TO 45,29,R(.IoI y'''G2
44 PAINT l , 4G,15:PAINT 1,.7, 12 :PAINT l , 47,26:DRAW 0 ,4 5 , 30 TO 46,20 TO 45,10
45 DRAW 0,34,14 TO 44,1~ :DFP-\\ 0,34.21 TO ~4,21 :0RAW 0 , 34 , 28 TO 44,28
47 SSHAPE hS,lO , 10,33,32:REM SAVE SPRITE IN AS
48 SSHAPE BS,34,10,57,32:REM SAV~: SPRI'n, IN BS
50 SPRSAV AS,l : Rt:1o\ SPkl OIl'1·}!'
55 SPRShV 8$,2:REM SPR2 01\1·A
60 SPRITE l,1.3,O,O,0,0 : RF!', SF.T SPRI A'l"l'RJBIJ'l·F.S
65 SPRITE 2,l,7~0,O,O,O:RFM SBT SPR2 ATTRIBUTES
82 MOVSPR 1,150 ,I50:REf.l ORIGIf..AL POSlTI ON OP SPkl
83 ~IOVSPR 2,172 ,150:REM ORIGINAL POSITION OP SPR2
85 MOVSPR 1,27C ~ 5 :REf-' MOVE SPRI ACROSS SCREF;N
87 ~lOVSPR ;!, 21(f ~ : RDl MOVf: SPR2 CROSS SCREP.N
90 POR 1~ITO 5950:~EXT:R~ DPLAY
92 "-:OVSPR I ,1 5C . 150: RF"·, POSITrON SPRI l'OR RETRO ROCKET LAUNCH
93 MOVSPR 2,174 , 15() :R~ POSITrON SPR2 ~'OR Rf:')·RO ROCKET LAUNCH
95 ~'OVSPR 1,270 t 10 : REP' SPLIT ROCKET
96 /O,O SPR 2, SC i ~ : fltJ-l SPLJ'1· ROCKl::'l'
97 I·OR 1 .. 1'1·0 1200 : tlFXT : RUl DU.JI.\'
98 SPR ITE 2 , O:REM TURN 0Fl" RB'l'RO ROCKET (SPR2)
99 ~'OR 1"1'1'0 20~OO :NEX'l' :RFJ.j DEL1\Y
]na GRAPHIC C, 1 :R~:M HF:'l·URl\ '·0 TE>i'l' ~lOlJl·:

Here's an explanation of the program:

• Line 5 COLORs the background black and the foreground
white.

• Line 10 selects standard high-resolution mode and clears the
high· res screen.

• Line 23 BOXes in a display area for the picture of the space-
craft in the top-left corner of the screen.

• Lines 17 through 21 DRAW the stars.
• Line 24 DRAWs and PAINTs Ihe planel.
• Une 25 DRAWs the CIRCLEs around the planel.
• Line 26 DRAWs the outline of the capsule portion of the

spacecraft _

122 USING C128 MODE-Color, Animalion and Sprile Graphics Sialemonia

' 23

• Line 28 DRAWs the bottom window of the space capsule.
• Line 35 DRAWs the top window of the space capsule.
• Line 38 PAINTs the space capsule white.
• Line 40 DRAWs the outline of the retro rocket portion of the

spacecraft.
• Lines 42 and 43 DRAW the relro rocket engines on the back

of the spacecraft.
• Line 44 PAINTs the relro rocket engines and DRAWs an oul­

line of the back of the retro rocket in the background color.
• Line 45 DRAWs lines on the retro rocket portion of the space­

craft in the background color. (AI this point, you have dis­
played only pictures on the screen. You have not used any
sprite statements, so your rocketship is not yet a sprite.)

• Line 47 positions the SSHAPE coordinates above the first half
(24 by 21 pixels), of the capsule of the spacecraft and stores it
in a data string, A$.

• Line 48 positions the SSHAPE coordinates above the second
half (24 by 21 pixels) of the spacecraft and stores it in a data
string, B$.

• Line 50 transfers the data from A$ into sprite 1.
• Line 55 transfers the data from B$ into sprite 2.
• Line 60 turns on sprite 1 and colors it red.
• Line 65 turns on sprite 2 and colors It blue.
• Line 82 positions sprite 1 at coordinate 150,150.
• Line 83 positions sprite 2, 24 pixels to the right of the starting

coordinate of sprite 1.
• Lines 82 and 83 actually join the two sprites.
• lines 85 and 87 move the joined sprites across the screen.
• Line 90 delays the program. This lime, delay is necessary lor

the sprites to complete the two trips across the screen. If you
leave oul the delay, the sprites do not have enough time to
move across the screen.

• Lines 92 and 93 position the sprites in the center of the
screen, and prepare the spacecraft to lire the retro rockets.

• Une 95 propels sprite 1, the space capsule, forward. The
number lain line 95 specifies the speed in which the sprite
moves. The speed ranges from 1, which is stop, to 15, which
is lightning last.

• Line 96 moves the expired retro rocket por tion of the space­
craft backwards and off the screen.

• Line 97 is another lime delay so the retro rocket, sprite 2, has
time to move off the screen.

• Line 98 turns off sprite 2, once it is off the screen.
• line 99 is another delay so the capsule can continue to move

across the screen.
• line 100 returns you to text mode.

Working with adjoining sprites can be more interesting than working
with a single sprite. The main points to remember are: (1) Make sure
you position the SSHAPE coordinates at the correct locations on the
screen, so you save the picture data properly; and (2) be certain to
position the sprite coordinates in the correct location when you are
joining them with the MOVESPR statement. In this example, you posi­
tioned sprite 2 at a location 24 pixels to the right of sprite 1.

Once you master the technique of adjoining two sprites, try more
than two. The more sprites you join, the better the detail and anima­
tion will be in your programs.

The C128 has two additional SPRITE commands, SPRCOLOR and
COLLISION, which are not covered in this chapter. To learn about
Ihese commands, refer 10 Chapler V, Ihe BASIC 7.0 Encyclopedia.

Storing Sprite Data in Binary Flies

NOTE: The following explanation assumes some knowledge of
machine language, memory locations, binary files and object
code files.

The Commodore 128 has Iwo new commands, BLOAD and BSAVE,
which make handling sprite data neat and easy. The "8" in 8LOAD
and BSAVE sland for BINARY. The BSAVE and BLOAD commands
save and load binary files to and from disk. A binary file consists of
either a portion of a machine language program, or a collection of
data within a specified address range. You may be familiar with the
SAVE command within the built-in machine language monitor. When
you use this SAVE command, the resulting file on disk is considered
a binary file. A binary file is easier to work with than an object code
file since you can load a binary file without any further preparation.
An object code file must be loaded with a loader, as in the Commo­
dore 64 Assembler Development System; then the SYSTEM com­
mand (SYS) must be used to execute it. When loading binary files,
remember to load them in either of these two ways:

LOAD "binary filename",8,1

or

BLOAD" binary filename",BO,Pstart

where start is 3584 if you are loading sprite data files.

124 USING C128 MODE-Color, Animation and Sprite GraphiCS Statements

In the first method you must specify the ", 1" at the end or else the
computer treats It as a BASIC program file and loads it at the begin·
ning of BASIC text The " ,1" tells the computer to load the binary file
Into the same place from which it was stored.

You 're probably wondering what thiS has to do with sprites. Here 's
the connection. The Commodore 128 has a dedicated portion of
memory ranging from decimal address 3584 ($OEOO) through 4095
($OFFF), where sprite data is stored This portion of memory takes
up 512 bytes_ As you know, a sprite is 24 pixels Wide by 21 pixels lall.
Each pixel requires one bit of memory. If the bit In a sprite is off
(equal to 0), Ihe corresponding pixel on the screen is considered off
and it takes on the color of the background. If a pixel within a sprite is
on (equal to 1), the corresponding pixel on the screen is turned on in
the foreground color. The combination Of zeroes and ones produces
the image you see on the screen.

Since a sprite is 24 by 21 pixels and each pixel requires one bi t of
storage in memory, one sprite uses up 63 bytes of memory. See Fig·
ure 6·8 to understand the storage requirements for a sprite's data.

125 USING C128 MODE-Color, Ammatlon and Spri te GraphiCS Statements

12345678 12345678 12345678
1 · · · · · · · · · · · · · · · · · · ·
2 · · · · · · · · · · · · · · · · · ·
3 · 4 · · · · · · · · · · · • · · · · · · • ·
5 · · · · · · · · · · · · · · · · · 6 · · · · · · · · · · · · · · · · · · · 7 · · · · · · · · · · · · • · · · • ·
8 · · · · · · · · · · · · · · · · · ·
9 · 10 · 11 · · · · · · · · · · · · · · · · · ·

12 · · · · · · · · · · · · · · · · 13 · · · · · · · · · · · · · · · · · · 14 · · · · · · · · · · · · · · · · · ·
15 · · · · · · · · · • · · · · · · • · ·
16 · · · · · · · · · · · · · · · 17 · · · · · · · · · · · · · · · · · 18 · · · · · · · · · · · · · · ·
19 · · · · · · · · · · • · · · • · · ·
20 · · · · · · · · · · · · · · · · · · ·
21 · · · · · · · · · · · · · · · ·

Each Row = 24 bits = 3 bytes

Figure 6·8. Sprite Data Requirements

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

A sprite requires 63 bytes of data. Each sprite block is actually made
up of 64 bytes; the extra byte is not used. Since the Commodore 128
has eight sprites and each one consists of a 64·byte sprite block, the
computer needs 512 (8 x 64) bytes to represent the data of all eight
sprite images.

126 USING Ci28 MODE-Color, Animation and Sprite Graphics Statements

The entire area where all eight sprite blocks reside starts at memory
location 3584 ($OEOO) and ends at location 4095 ($OFFF). Figure 6·9
lists the memory address ranges where each individual sprite stores
its data.

SOFFF (4095 Decimal)

I-Sprite a
SOFCO

I-Sprite 7
SOF80

I-Sprite 6
$OF40

I-Sprite 5
SOFOO

I-Sprite 4
SOECO

I-Sprite 3
SOEaO

I-Sprite 2
$OE40

I-Sprite 1
$OEOO (3584 Decimal)

Figure &9. Memory Address Ranges for Sprite Storage

BSAVE Once you exit from the SPRDEF mode, you can
save your sprite data in binary sprite files . This
way, you can load any collection of sprites back
into the Commodore 128 neatly and easily. Use
this command to save your sprite data into a
binary file:

BSAVE "filename", BO, P3584 TO P4096

The binary filename is a name you give to the file. The "80" specifies
that you are saving the sprite data from bank O. The parameters
"P3584 TO P4096" signify you are saving the address range 3584
($OEOO) through 4095 ($OFFF), which is the range where all the sprite
data is stored.

You do not have to define all of the sprites when you BSAVE them.
The sprites you do define are 8SAVEd from the correct sprite block.
The undefined sprites are also BSAVEd in the binary file from the
appropriate sprite block, but they do not matter to the computer. It is

127 USING C128 MODE-Color, Animation and Sprite Graphics Statements

easier to BSAVE the entire 512 bytes of all eight sprites, regardless if
all the sprites are used, rather than BSAVE each sprite block individ·
ually.

BLOAD Later on, when you want to use the sprites
again, just BLOAD the entire 512 bytes for all of
the sprites into the range starting at 3584
($OEOO) and ending at 4095 ($OFFF). Here's the
command to accomplish this:

BLOAD " fiIename'1, BO, P3584)

Use the same filename you entered when you BSAVEd your original
sprite data. The " BO" stands for the bank number 0 and the P3584
specifies the starting location where the binary sprite data file is
loaded. The last two parameters are optional.

.~ ** ••• • * •••••• " • •••••••••••• • • • •• • • • •••

In this section you have seen how much the new Commodore 7.0
BASIC commands can simplify the usually complex process of cre­
ating and animating graphic images. The next section describes
some other new BASIC 7.0 commands that do the same for music
and sound.

126 USING C128 MODE-Color, Animation and SPffte Graphics Statements

SECTION 7
Sound and Music
InC128 Mode

INTRODUCTION

THE SOUND STATEMENT
Wriling a SOUND Program
Random Sounds

131

133
134
138

ADVANCED SOUND AND MUSIC IN C128 MODE 140
A Brief Background: The Characteristics of Sound 140
Making Music on Ihe Commodore 128 142

The ENVELOPE Statement 142
The TEMPO Statement 145
The PLAY Statement 145
The SID Filter 149
The FILTER Statement 152

Tying your Music Program Together 153
Advanced Filtering 154

CODING A SONG FROM SHEET MUSIC 156

129 USING C128 MODE-Sound and MUSIC In el2S Mode

Introduction The Commodore 128 has one of the most sophisticated built-in
sound synthesizers available in a microcomputer. The synthesizer,
called the Sound Interface Device (SID), is a chip dedicated solely to
generating sound and music. The SID chip is capable of producing

three independent voices (sounds)
simultaneously. Each of the voices
can be played in one of four types
of sounds, called waveforms. The
SID chip also has programmable
Attack, Decay, Sustain and
Release (ADSR) parameters. These
parameters define the quality of a
sound. In addition. the synthesizer
has a filter you can use to choose
certain sounds, eliminate others, or
modify the characters of a sound or
sounds. In this section you will
learn how to control these parame·
ters to produce almost any kind of
sound.

To make it easy for you to select
and manipulate the many capabili­
ties of the SID chips, Commodore
has developed new and powerful
BASIC music statements.

Here are the new sound and music
statements available on the
Commodore 128:

SOUND
ENVELOPE
VOL
TEMPO
PLAY
FILTER

This section explains these sound
statements, one at a time, in the
process of constructing a sample
musical program. When you are
finished with this section, you will
know the ingredients thaI go into a
musical program. You 'll be able to
expand on the example and write

131 USING e12S MODE-Sound and Musicin C128 Mode

programs that play intricate musi­
cal compositions_ Eventually, you 'll
be able to program your own musi­
cal scores, make your own sound
effects and play works of the
great classical masters such as
Beethoven and contemporary art·
ists !ike the 8eatles. You can even
add computer-generated music to
your graphics programs to create
your own "videos."

132 USING C128 MODE-Sound and Music In Cl 28 Mode

Th.SOUNO
Statement

The SOUND statement is designed primarily for quick and easy
sound effects in your programs. You will learn a more intricate way of
playing complete musical arrangements with the other sound state­
ments later in this section.

The format for the SOUND statement is as foHows'

SOUND VC, FREO, DUR[, DlR[, MIN[, SV[, WF[, PW[)[]]

Here's what the parameters mean:
VC -Selecl VoiCe 1, 2 or 3

FREQ-Sel the FREQuency level of sound (0-65535)

DUR -Set DURation of the sound (in 60ths of a second)

DIR -Set the DIRection in which the sound is incrementedl
decremented

a ::: Increment the frequency upward

1 = Decrement the frequency downward

2 ::: Oscillate the frequency up and down

MIN -Select the MINimum frequency (0-65535) if the
sweep (DIR) is specified

SV - Choose the Step Value for the sweep (0-32767)

WF -Select the Wave Form (0-3)

o ::: Triangle

1 ::: Sawtooth

2 ::: Variable Pulse

3 ::: White Noise

PW - Set the Pulse Width, the width of the variable pulse
waveform

Note that the OIR, MIN, SV, WF and PW parameters are optional.

The first parameter (VC) in the SOUND statement selects which
voice will be played. The second parameter (FREO) determines the
frequency of the sound, which ranges from 0 through 65535. The
third setting (OUR) specifies the amount of time the sound is played.
The duration is measured in 60ths of a second. If you want to playa
sound for one second, set the duration to 60, since 60 times 1/60
equals 1. To play the sound for two seconds, specify the duration to
be 120. To play the sound 10 seconds, make the duration 600, and so
on_

133 USING C128 MODE-Sound and Music in el28 Mode

The fourth parameter (DIR) selects the direction in which the fre­
quency of the sound is incremented or decremented_ This is referred
to as the sweep. The fifth setting (MIN) sets the minimum frequency
where the sweep begins. The sixth setting (SV) is the step value of
the sweep. It is similar to the step value in a FOR ... NEXT loop. If
the DIR. MIN and SV values are specified in the SOUND command,
the sound is played first at the original level specified by the FREO
parameter. Then the synthesizer sweeps through and plays each
level of the entire range of frequency values starting at the MIN fre·
quency. The sweep is incremented or decremented by the step value
(SV) according to the direction specified by the DIR parameter and
the frequency is played at the new level.

The seventh parameter (WF) in the SOUND command selects the
waveform for the sound. (Waveforms are explained in detail in the
paragraph tilled, Advanced Sound and Music in C128 Mode.)

The final settlng in the SOUND command determines the width of
the pulse width waveform if it is selected as the waveform parame·
ter. (See the Advanced Sound discussion for an illustration of the
pulse width waveform.)

Writing a SOUND Program

Now it's time to write your first SOUND program. Here's an example
of the SOUND statement:

10 VOL 5
20 SOUND 1, 4096, 60

RUN this program. The Commodore 128 plays a short, high'pitched
beep. You must set the volume before you can play the sound state­
ment, so line 10 sets the VOLume of the sound chip. Line 20 plays
voice 1 at a frequency of 4096 for a duration of 1 second (60 times 11
60). Change the frequency with this statement:

30 SOUND 1, 8192, 60

Notice line 30 plays a higher tone than line 20. This shows the direct
relationship between the frequency setting and the actual frequency
of the sound. As you increase the frequency setting, the Commodore
128 increases the pitch of the tone. Now try this statement:

40 SOUND 1, 0, 60

This shows that a FREO value of 0 plays the lowest frequency (which
is so low it is inaudable). A FREQ value of 65535 plays the highest
possible frequency.

134 USING C128 MODE-Sound and Music in C128 Mode

Now try placing the sound statement wi thin a FOR , , , NEXT loop,
This allows you to play the complete range of frequencies within the
loop, Add these statements to your program:

50 FOR I = 1 TO 65535 STEP 100
60 SOUND 1, I, 1
70 NEXT

This program segment plays the variable pulse waveform in the
range of frequencies from 1 through 65535, in increments of 100,
from lowest frequency to highest. If you don't specify the waveform,
the computer selects the default value of waveform 2, the variable
pulse waveform,

Now change the waveform with Ihe fOllowing program line (60) and
try the program again:

60 SOUND 1, I, 1, 0, 0, 0, 0, 0

Now the program plays voice 1, using the triangle waveform, for the
range of frequencies between 1 and 65535 in increments of 100.
This sounds like a typical sound effect in popular arcade games, Try
waveform 1, the sawtooth waveform, and see how it sounds with
this line:

60 SOUND 1, I, I , 0, 0, 0, 1, 0

The sawtooth waveform sounds similar to the triangle waveform
though it has less buzz. Finally, try the white noise waveform (3).
Substitute line 60 for this line:

60 SOUND 1, I, 1, 0, 0, 0, 3, 0

Now the program loop plays the white noise generator for the entire
range of frequencies. At first , there is a low-pitched rumbling sound.
As the frequency increases in the loop, the pitch increases and
sounds like a rocket taking off.

135 USING C128 MODE-Sound and Music in C128 Mode

Notice that so far, we have not specified all of the parameters in the
SOUND statement Take line 60, for example:

60 SOUND 1, I, 1, 0, 0, 0, 3, 0

The three zeros following 1, I, 1 pertain 10 the sweep parameters
within the SOUND statement Since none of the paramelers is speci­
fied, the SOUND does not sweep Add thiS line to your program:

100 SOUND 1, 49152, 240, 1, 0, 100, 1, 0

~~~~~ency JJ 
Duration _--,:-___ _ ----' 
Sweep Direction =-____ -' 
Minimum Sweep Frequency __ ---" 
Step Value for Sweep _____ -' 
Wavefor m -,---,--,----,--;-:-:-:c-:c--- ---' 
Pulse Width for Variable Width 

Waveform ___________ -' 

Line 100 starts the sweep frequency at 49152 and decrements the 
sweep by 100 in the downward direction, until it reaches the mini­
mum sweep frequency at 0. VOice 1, using the sawtooth waveform 
(Hl), plays each SOUND lor lour seconds (240 • 1160 sec.). Lme 100 
sounds like a bomb dropping, as In many "shoot 'em up" arcade 
games 

Now try changing some of the parameters In line 100. For instance, 
change the direction of the sweep to 2 (oscillate); change the mini­
mum frequency of the sweep to 32768; and Increase the step value 
to 3000. Your new SOUND command looks like this 

110 SOUND 1, 49152, 240, 2, 32768, 3000, 1 

line 110 makes a siren sound as though the police were right on 
your tail. For a more pleasant sound, try this: 

110 SOUN~ 1, 65535, 250, 0, 32768, 3000, 2, 2600 

This should remind you of a popular space-age TV show, when the 
space crew unleashed their futuristiC weapons on the unsuspecting 
aliens 

Until now, you have been programming In only one vOice. You can 
produce Interesting sound effects With the SOUND statement using 

136 USING C128 MODE-Sound and M USIC In C128 Mode 



up to three voices. Experiment and create a program which utilizes 
all three voices. 

Here's a sample program that will help you understand how to pro­
gram the Commodore 128 synthesizer chip. The program, when run, 
asks for each parameter, and then plays the sound. Here's the pro­
gram listing. Type it into your computer and RUN it. 

10 PRINT : PRINT : PRINT:PRINT" C SOUND PLAYER":PRINT:PRINT : PRINT 
20 PRINT " INPUT SOUND PARAMETERS TO PLAY" :PRINT:PRINT 
30 INPUT " VOICE (1-3)";V 
40 INPUT " PREQUENCY (0-65535)" ; F 
50 INPUT "DURATION (0-32767)" ; D:PRINT 
6 0 J NPUT"\\lANT TO SPECI FY OPTIONAL PARAMETERS YIN"; BS: PRJ NT 
70 IF BS="N" THEN 1]0 
80 I NPUT "SWEEP DIRECT ION O:UP, l:DQl.offl, 2=05CI LL" ; DIR 
90 INPUT "MINIMUM SWEEP PREQUENCY {'O-6SS3S·)" ;~1 
100 INPUT " SWEEP STEP VALUE (0-32767)";5 
110 INPUT "WAVEPC.;ttM (0=TRI,I=SAW,2=VAR PUL,3=NOISE";W 
120 IF W=2 THEN INPUT "PULSE WIDTH (0-4095) "; P 
130 SOUND V, F , D, DIR, M, 5, W, P 
140 INPUT " DO YOU WANT TO HEAR THE SOUND AGAIN Y/N";AS 
150 IF AS="Y"THEN 130 
160 GOTOIO 

Here's a quick explanation of the program. Lines 10 and 20 PRINT 
the introductory messages on the screen. Lines 30 through 50 
INPUT the voice, frequency and duration parameters. Line 60 asks if 
you want to enter the optional SOUND parameters, such as the 
sweep settings and waveform. If you don't want to specify these 
parameters, press the uN" key and the program jumps to line 120 
and plays the sound. If you do want to specify the optional SOUND 
settings, press the " Y" key and the program continues with line 80. 
Lines 80 through 110 specify the sweep direction, minimum sweep 
frequency, sweep step value and waveform. Line 120 INPUTs the 
pulse width of the variable pulse waveform only if waveform 2 (varia· 
ble pulse) is selected. Finally, line 130 plays the SOUNO according to 
the parameters that you specified earlier in the program. 

Line 140 asks if you want to hear the SOUND again. If you do, press 
the " Y" key; otherwise, press the "N" key. Line 150 checks to see if 
you pressed the "Y" key. If you did, program control is returned to 
line 130 and the program plays the SOUND again. If you do not press 

137 USING C128 MODE-Sound and Music in C128 Mode 



the "Y" key, the program continues with line 160, which returns pro­
gram control to line 1 0 and the program repeats. To stop the Sound 
Player program, press the RUN/STOP and RESTORE keys at the 
same time. 

Random Sounds 

The following program generates random sounds using the RND 
funct ion. Each SOUND parameter is calculated randomly. Type the 
program into your computer, SAVE it and RUN it. This program illus­
trates how many thousands of sounds you can produce by specify­
ing various combinations of the SOUND parameters. Here's the 
listing: 

10 PRINT " VC FREQ DI R MIN SV WF PW " 
2 0 PRINT " _-:-:-:-:-:-:-:-:=--:-:== _____ _ 
30 V=INTIRNDl l ) * 3)+1 : REM VO I CE 
40 F=INTIRNDIl)*65535) :REM FREQ 
50D=INTIRND l l)*32767) : REM DURATION 
60 DIR=INTIRNDll) * 3) : REM STEP DIR 
70 M=INTIRNDIl) * 65535) : REM MI N FREQ 
80 S=INTIRNDll)*32767) :REM STEP VAL 
90 W=INTIRNDll)*4) : REM WAVEFORM 
100 P=INTIRNDll)*4095) : REM PULSE W 
110 PRINTV ; F ; DIR;M;S ; W; P : PRINT:PRINT 
120 SOUND v , F , 0 , DIR , M, S , w, p 
130 SLEEP 4 
140 SOUND V, 0 , 0 , DIR , 0 , 0 , w, P 
1 5 0 GOT0 10 

" 

Lines 10 and 20 PRINT parameter column headings and Ihe under­
line. lines 30 through 100 calculate each SOUND parameter wi thin 
its specific range. For example, line 30 calculates the voice number 
as follows: 

30 V = INTIRND(1)·3) + 1 

The notation AND (1) specifies the seed value of the random num­
ber. The seed is the base number generated by the computer. The 1 
tells the computer to generate a new seed each time the command 
is encountered. Since the Commodore 128 has three voices, the 
notation * 3 tells the computer to generate a random number within 
the range 0 through 3. Notice, however, there is no voice 0, so the 

138 USING C128 MODE-Sound and Music In C128 Mode 



+ 1 in line 30 tells the computer to generate a random number in the 
range between 1 and 3. The procedure for generating a random 
number in a specific range is to multiply the given random number 
times the maximum value of the parameter (in this case, 3). If the 
minimum value of the parameter is greater than zero, add to the ran· 
dam number a value that will specify the minimum value of the range 
of numbers you want to generate (in this case, 1). For instance, line 
40 generates a random number in the range between 0 and 65535. 
Since the minimum value is zero in this case. you do not need to add 
a value to the generated random number. 

Line 110 PRINTs the values of the parameters. Line 120 plays the 
SOUND specified by the random numbers generated in lines 30 
through 100. Line 130 delays the program for 4 seconds while the 
sound is playing. Line 140 turns off the SOUND after the 4 second 
delay. All sounds generated by this program play for the same 
amount of time, since they are all turned off after 4 seconds with line 
140. Finally, line 150 returns control to line 10, and the process is 
repeated until you press the RUN/STOP and RESTORE keys at the 
same time. 

So far you have experimented with sample programs using only the 
SOUND statement. Although you can use the SOUND statement to 
play musical scores, it is best suited for quick and easy sound 
effects like the ones in the dogfight program. The Commodore 128 
has other statements designed specifically for song playing. The 
following paragraphs describe the advanced sound and music state· 
ments that enable you to play complex musical scores and arrange­
ments with your Commodore 128 synthesizer. 

139 USING C128 MODE-Sound and Music In e 128 Mode 



Advanced Sound 
and Music In 
C128 Mode A Brief Background: The Characteristics of Sound 

Every sound you hear is actually a sound wave traveling through the 
air Like any wave. a sound (sine) wave can be represented graphi­
cally and mathematically (see Figure 7-1). 

Figure 7·1. Sine Wave 

The sound wave moves (oscillates) at a par ticular rate (frequency) 
which determines the overall pi tch (the highness or lowness of the 
sound), 

The sound IS also made up of harmonics. which are accompanying 
multiples of the overall frequency of the sound or note. The combina· 
tion of these harmonic sound waves give the note its qualities. called 
timbre. Figure 7·2 shows the relationship of basic sound frequencies 
and harmoniCS. 

~, __ RESULTANT WAVE 

"' ..... , _ - FUNDAMENTAL (1ST HARMONIC) 

2ND HARMONIC 3RD HARMONIC 

Figure 7·2. Frequency and Harmonics 

The timbre of a mUSical tone. (I.e. , the way a tone sounds.) is deter­
mined by the tone's waveform. The Commodore 128 can generate 
four types of waveforms. tnangle, sawtooth, variable pulse and 
noise. See Figure 7-3 for a graphic representallon of these four 
waveforms. 

1<10 USING C128 MODE-Sound and MUSIC In e l 2S Mode 



'-

TAtANGLE 

SAWTOOTH 

r- ..... " ..,0' .. _ 
'-

VAAtABLE 
PULSE 

NOI SE 

'-

Figure 7·3. Sound Waveforms Types 

141 USING Ct28 MODE-Souna ana MusIc In e128 Mode 



Making Music on the Commodore 128 

The ENVELOPE The volume of a sound changes throughout the 
Statement duration of the note, from when you first hear it 

until it is no longer audible. These volume quali· 
ties are referred to as Attack, Decay, Sustain 
and Release (ADSR)_ Attack is the rate at which 
a musical note reaches its peak volume. Decay 
is the rate at which a mUSical note decreases 
from its peak volume to its midranged (sustain) 
level. Sustain is the level at which a musical 
note is played at its midranged volume. Release 
is the rate at which a musical note decreases 
from its sustain level to zero volume. The ENVE· 
LOPE generator controls the ADSR parameters 
of sound. See Figure 7·4 for a graphical repre· 
sentation of ADSR. The Commodore 128 can 
change each ADSR parameter to 16 different 
rates. This gives you absolute flexibili ty over the 
ENVELOPE generalor and Ihe resulling proper· 
ties of the volume when the sound is originated. 

SUSTAIN LEVEl -- --...:---". ----,. " , 
" , 
" , 

A : 0 : s , II ; 

Figure 7·4. ADSR Phases 

One of the most powerful Commodore 128 
sound statements-the one that controls the 
ADSR and waveform-is Ihe ENVELOPE slale· 
ment. The ENVELOPE slalemenl sets Ihe differ· 
ent controls in the synthesizer chip which 
makes each sound unique. The ENVELOPE 
gives you the power to manipulate the SID syn· 
theslzer. With ENVELOPE, you can select partic· 
ular ADSR seltings and choose a waveform for 
your own music and sound effects. The format 
for the ENVELOPE statement is as follows: 

ENVELOPE el,a(.dl ,sl,rl ,wf(,Pwl 1111 I 

14: USING C128 MODE-Sound and MusIc In GI2S Mode 



-

Here's what the leIters mean: 

e - envelope number (0-9) 
a - attack rate (0- t 5) 
d - decay rate (0-'5) 
s - sustain level (0-15) 
r - release rate (0-15) 
wI - waveforrn-O = triangle 

1 = sawtooth 
2 = pulse (square) 
3 = noise 
4 = ring modulation 

pw - pulse width (0-4095) 

Here are the definitions of the parameters not 
previously defined: 

Envelope -The properties of a musical 
note specified by the wave­
form and the attack, decay, 
sustain and release settings 
of the note. For example. the 
envelope for a guitar note 
has a different ADSR and 
waveform than a flute. 

Waveform -The type of sound wave 
created by the combination 
of accompanying musical 
harmonics 01 a tone. The 
accompanying harmonic 
sound waves are multiples 
of, and are based on the 
overall frequency of the 
lone. The qualities of the 
tone generated by each 
waveform are recognizably 
different from one another 
and are represented graphi­
cally in Figure 7-3. 

Pulse Widlh - The length 01 time between 
notes, generated by the 
pulse waveform. 

Now you can realize the power of the ENVE­
LOPE statement. It controls most of the musical 
qualities of the notes being played by the sound 

143 USING C128 MODE-Sound and Music In C128 Mode 



synthesizer. The Commodore 128 has 10 prede-
fined envelopes for 10 different musical instru-
ments. In using the predefined envelopes you 
do not have to specify the ADSR parameters, 
waveform and pulse width settings- this is 
already done for you. All you have to do is spec-
ify the envelope number. The rest of the parame· 
ters are chosen automatically by the Comma· 
dare 128. Here are the preselected envelopes 
for different types of musical instruments: 

Envelope Wave· 
Number Instrument Attack Decay Sustain Release form Width 

0 
1 
2 
3 
4 
5 
6 
7 

• 9 

Piano 0 9 0 0 2 1536 
Accordion 12 0 12 0 1 
Calliope 0 0 25 0 0 
Drum 0 5 5 0 3 
Flute 9 4 4 0 0 
Guitar 0 9 2 1 1 
Harpsichord 0 9 0 0 2 512 
Organ 0 9 9 0 2 2048 
Trumpet • 9 4 1 2 512 
Xylophone 0 9 0 0 0 

Figure 7·5. Default Parameters for ENVELOPE Statement 

Now that you have a little background on the 
ENVELOPE statement, begin another example 
by entering this statement into your Commodore 
128. 

10 ENVELOPE 0, 5, 9, 2, 2, 2, 1700 

This ENVELOPE statement redefines the default 
piano envelope (0) to the following: Attack = 5, 
Decay = 9, Sustain = 2, Release = 2, wave· 
form remains the same (2) and the pulse width 
of the variable pulse waveform is now 1700. The 
piano envelope will not take on these properties 
until it is selected by a PLAY statement, which 
you will learn later in this section. 

144 US1NG C128 MODE-Sound and Music in C12B Mode 

-



The TEMPO 
Statement 

The PLAY 
Statement 

The next step in programmng mUSIC IS setting 
the volume of the sound chip as follows: 

20 VOL 8 

The VOL statement sets the volume of the sound 
chip between 0 and 15. where' 5 IS the maxi­
mum and 0 IS off (no volume)_ 

The next step in Commodore 128 music pro­
gramming IS controlling the tempo. or speed of 
your tune The TEMPO statement does this for 
you Here's the format 

TEMPO n 

where n IS a digit between ° and 255 (and 255 is 
the fastest tempo). If you do not specify the 
TEMPO statement In your program, the Commo­
dore 128 automatically sets the tempo to 8. Add 
thiS statement to your musical example 
program-

30 TEMPO 10 

Now It'S tIme to learn how to play the notes in 
your song You already know how the PRINT 
statement works You play the notes in your tune 
the same way as PRINTing a text string to the 
screen. except you use the PLAY statement in 
place 01 PRtNT PRINT outputs lexl, PLAY out­
puts mUSical notes 

Here's the general format for the play statement: 

PLAY" string of synthesizer control 
characters and musical notes" 

The tala I number of characters (Including musi­
cal notes and synthesizer con trol characters) 
that can be put Into a PLAY command is 255. 
However, since this exceeds Ihe maximum 
number 01 characters (160) allowed lor a single 
program hne In BASIC 7 0, you have to concate­
nate (that IS, add together) at least two strings to 
reach this length. You can avoid the need to 
concatenate strings by making sure your PLAY 
commands do not exceed 160 characters. i.e., 

145 USING C128 MODE-Sound and MUSIC In C128 Mode 



one program line in length. (This is equivalent to 
four screen lines in 40-column mode. and two 
screen lines in SO-column mode.) By doing this, 
you will produce PLAY command strings that 
are easier to understand and use. 

To play musical notes, enclose the letter of the 
note you want to play within quotes. For exam­
ple. here's how to play the musical scale: 

40 PLAY "e 0 E F GAB" 

This plays the notes C, D, E, F, G, A and B in the 
piano envelope. which is envelope O. After each 
time you RUN this example program you are 
creating, hold down the RU N/STOP key and 
press the RESTORE key to reset the synthesizer 
chip. 

You have the option of specifying the duration of 
the note by preceding it in quotes wi th one of 
the following letters: 

W- Whole note 
H - Hall note 
a - Quarter note 
1 - Eighth note 
S - Sixteenth nole 

The default setting, if the duration is not speci­
fied, is for Whole 0N) notes. 

You can PLAYa rest by including the following in 
the PLAY string: 

R- Aesl 

You can instruct the computer to wait until all 
voices currently playing reach the end of a mea­
sure by including the following in quotes: 

M- Wall for end of measure 

The Commodore 128 also has synthesizer con­
trol characters you can enclose within quotes in 
a PLAY string. This gives you absolute control 
over each note and allows you 10 change syn· 
thesizer controls within a string of notes. Follow 

146 USING C128 MODE-Sound and M USIC in C128 Mooe 



the control character with a number in the allow­
able range for that character. The control char· 
acters and the range of numbers for each are 
shown in Figure 7-6. The "n" following the can· 
trol character refers to the number you select 
from the specified range. 

Control Default 
Character Description Range Setting 

V n Voice 1-3 1 
o n Octave 0-6 4 
T n Envelope 0·9 0 
Un Volume 0·15 9 
X n Filter 0 = olf, 0 

1 = on 
Figure 7·6. Sound Synthesizer 

Control Characters 

Although the SID chip can process these con­
trol characters in any order, for the best results, 
place the control characters in your string in the 
order that they appear in Figure 7-6. 

You don't absolutely have to specify any of the 
control characters, but you should to maximize 
the power from your synthesizer. The Commo­
dore 128 automatically sets the synthesizer 
controls to the default settings in Figure 7-6. If 
you don't assign special control characters, the 
SI D chip can PLAY only one envelope, one voice 
and one octave without any FILTERing. Specify 
the control characters to exercise the most con­
trol over the notes within your PLAY string. 

If you specify an ENVELOPE slalemenl and 
select your own settings instead of using the 
default parameters from Figure 7·5, the enve­
lope control character number in your PLAY 
string must match the envelope number in your 
ENVELOPE statement in order to assume the 
parameters you assigned. You don't have to 
specify Ihe ENVELOPE slalemenl al all if you 
just wanllo PLAY Ihe defaull envelope sellings 
from Figure 7·6. In this case, simply select an 
envelope number with the en control character 
in the PLAY statement. 

147 USING C128 MODE-Sound and Music in C128 Mode 



Here's an example of the PLAY statement using 
the SID chip control characters within a string, 
Add this line to your program and notice the 
difference between this statement and the 
PLAY statement in line 40. 

50 PLAY " V2 05 T7 US XO C D E F GAB" 

This statement PLAYS the same notes as in line 
40, but voice 2 is selected, the notes are played 
one octave higher (5) than line 40, the volume 
selling is turned down to 5 and the FILTER is 
specified as off. For now, leave the filter off. 
When you learn about FILTERing in the next 
section, you can come back and turn the filter 
on to see how it affects the notes being played. 
Notice line 50 selects a new instrument, the 
organ envelope, with the T7 control character. 
Now your program PLAYS two different instru­
ments in two of the independent voices. Add 
this statement to PLAY the third voice: 

60 PLAY " V3 06 U7T6 XO C D E F GAB" 

Here's how line 60 controls the synthesizer. The 
V3 selects the third voice, 06 places voice 3 one 
octave higher (6) than voice two, T6 selects the 
harpsichord envelope, U7 sets the volume to 7 
and XO leaves the filter off for all three voices. 
Now your program PLAYS all three voices, each 
one octave higher than the other, in three sepa­
rate instruments, piano, organ and harpsichord. 

So far, your PLAY statements only played whole 
notes. Add notes of different duration by placing 
duration control characters in your PLAY string 
as follows: 

70 PLAY "V2 06 TO U7 XO H C D a EFt G 
AS Bn 

Line 70 PLAYs voice 2 In octave 6 at volume 
level 7 with the redefined piano envelope (0) on 
and fi lter turned off. This statement PLAYs the 
notes C and D as half notes, E and F as Quar ter 
notes, G and A as eighth notes and B as a six­
teenth note. Notice the difference between the 

148 USING e12S MODE-Sound and Music In C128 Mode 



The SID Filter 

piano envelope in line 40 and the redefined 
piano envelope in line 70. Une 40 actually 
sounds more like a piano than line 70. 

You can PLAY sharp, Ilat and dotted notes by 
preceding the notes within quotes with the 101· 
lowing characters: 

# - Sharp 
$ - Flat 

. - Dot led 

A dotted note plays one·and·a·hall times longer 
than a note that is not dotted. 

Now try adding sharp, flat and dotted notes with 
this statement: 

80 PLAY " VI 04 T4 US XO .H C 0 Q # E F I 
$ G A .S # B" 

Line 80 PLAYS voice 1 in octave 4 at volume 
level 8 with the flute envelope turned on and the 
filter turned off. It also PLAYS C and D as dotted 
hall notes, E and F as sharp quarter notes, G 
and A as flat eighth notes and B as a sharp dot· 
ted sixteenth note. You can add rests (R) at any 
place within your PLAY string. The spaces in the 
new PLAY statement examples are not neces· 
sary. They are used only for readability. 

Up until now your statement examples have left 
the filter off within the sound synthesizer and 
have not realized the true power behind it. Now 
that you have digested most of the sound and 
music statements and the SID control charac· 
ters, move on to the next section to learn how to 
enhance your musical quality with the FILTER 
statement. 

Once you have selecled the ENVELOPE, ADSR, 
VOLume and TEMPO, use Ihe FILTER to per feci 
your synthesized sounds. In your program, the 
FILTER slatement will precede Ihe PLAY state· 
ment. First you should become comfortable 
with generating the sound and worry about FIL· 
TERinglast. Since the SID chip has only one 

149 USING C128 MODE-Sound and Music In C128 Mode 



filler, il applies 10 alllhree voices. Your comput­
erized tunes will play without FILTERing, but to 
take full advantage of your music synthesizer, 
use the FILTER statement to increase the sharp­
ness and quality of the sound. 

In the first paragraph of this section, The Char­
acteristics of Sound, we defined a sound as a 
wave traveling (oscillating) through the air at a 
particular rate. The rate at which a sound wave 
oscillates is called the wave's frequency. Recall 
that a sound wave is made up of an overall fre­
quency and accompanying harmonics, which 
are multiples of the overall frequency. See Fig­
ure 7·2. The accompanying harmonics give the 
sound its timbre, the qualities of the sound 
which are determined by the waveform. The 
filter within the SID chip gives you the ability to 
accent and eliminate the harmonics of a wave­
form and change its timbre. 

The SID chip filters sounds in three ways: low­
pass, band-pass and high-pass filtering. These 
filtering methods are addi tive, meaning you can 
use more than one filter at a time. This is dis­
cussed in the next section. Low-pass filters out 
frequencies above a certain level you specify, 
called the cutoff frequency. The cutoff fre­
quency is the dividing line that marks the bound· 
ary of which frequency level will be played and 
which will not. In low·pass filtering, the SID chip 
plays all frequencies below the cutoff frequency 
and filters out the frequencies above it. As the 
name implies, the low frequencies are allowed 
to pass through the filter and the high ones are 
not. The low-pass filter produces full, solid 
sounds. See Figure 7-7. 

150 USING C126 MODE-Sound and Music in C128 Mode 



CUTOFF 

FREOUENCY 

Figure 7·7. Low·pass Filter 

Conversely, Ihe high·pass filler allows all the 
frequencies above the cutoff frequency to pass 
through the chip. All the ones below it are fil­
tered out. See Figure 7-8. The pass filter pro­
duces tinny, hollow sounds. 

CUTOFF 

FREOUENCY 

Figure 7·8. High·pass Filter 

The band-pass filter allows a range of frequen­
cies partially above and below the cutoff fre­
quency to pass through the SID chip. All other 
frequencies above and below the band sur­
rounding the cutoff frequency are filtered out. 
See Figure 7-9 

o 
w 
o 

f ... z 

" o 

'" < CUTOFF 

FREOUENCY 

Figure 7·9. Band-pass Filter 

151 USING e128 MODE-Sound and MusIC In G12S Mode 



The FILTER 
Statement 

The FILTER statement specifies the cutoff fre· 
quency, the type of filter being used and the 
resonance_ The resonance is the peaking effect 
of the sound wave frequency as it approaches 
the cutoff frequency. The resonance determines 
the sharpness and clearness of a sound: the 
higher the resonance, the sharper the sound, 

This IS the format of the FILTER statement: 

FILTER ct, Ip, bp, hp, res 

Here's what the parameters mean: 

cf - Culoff frequency (0-2047) 
Ip -Low-pass filter 0 = off,1 = on 
bp -Band-pass filter 0 = off, 1 = on 
hp - High-pass filter 0 = off, 1 = on 
res - Resonance (0-15) 

You can specify the cutoff frequency to be any 
value between 0 and 2047. Turn on the low-pass 
filter by specifYing a 1 as the second parameter 
in the FILTER statement. Turn on the band-pass 
filter by specifYing a 1 as the third parameter 
and enable the high-pass filter with a 1 in the 
fourth parameter position. Turn off any of the 
three filters by placing a 0 in the respective posi­
tion of the filter you want to disable_ You can 
enable or disable one, two or aU three of the 
filters at the same time_ 

Now that you have some background on the 
FILTER statement, add this line to your sound 
program, but do not RUN the program yet. 

45 FILTER 1200, 1, 0, 0, 10 

Line 45 sets the cutoff frequency at 1024, turns 
on the low-pass filter, disables the high-pass and 
band-pass filters and assigns a 10 as the reso­
nance level. Now go back and turn the filter on 
in your PLAY statements by changing all the XO 
filter control characters to X1. Reset the sound 
chip by pressing Ihe RUN/STOP and RESTORE 
keys and RUN your sound program again. 
Nolice Ihe differences bel ween the way the ~ 

152 USING C12B MODE-Sound and MusIc In C128 MOde 



notes sound and how they sounded without the 
filter. Change line 45 to: 

45 FILTER 1200, 0, 1, 0, 10 

The new line 45 turns off the low-pass filter and 
enables Ihe band· pass filler. Press RUN/STOP 
and RESTORE and RUN your sound program 
again. Notice the difference between the low­
pass and band-pass filters. Change line 45 again 
to: 

45 FILTER 1200, 0, 0, 1, 10 

Reset the sound chip and RUN your example 
program again. Notice the difference between 
the high·pass filler and the low·pass and band· 
pass filters. Experiment with different cutoff 
frequencies. resonance levels and filters to per­
fect the music and sound in your own programs. 

Tying Your Music Program Together 

Your first musical program is complete. Now you can program your 
favorite songs. Let's tie all the components together. Here's the pro­
gram listing. Don't be alarmed. this is the same program you built in 
this section except the print statements are added so you know 
which program lines are being played. 

10 ENVELOPE 0,5,9,2,2,2,1700 
15 VOL 8 
20 TEMPO 10 
25 PRINT-LINE )0· 
30 PLAY "e 0 E F GAB H­
)5 PILTER 1200 , 0,0,1,10 
40 PRINT"LINE 45 - FILTER OFF-
45 PLAy"v2 05 T7 us XO e 0 E F GAB M-
50 PRINT· SAME AS LINE 45 - FILTER ON" 
55 PLAY"V2 05 T7 U5 XI e 0 E F GAB M" 
60 PRINT"LINE 65 - FILTER OFF" 
65 PLAY "V3 06 U7 T6 XO C 0 E F GAB H" 
70 PRINT"SAME AS LINE 65 - FILTER ON" 
75 PLAY "V3 06 U7 T6 XI C 0 E F GAB H" 
80 PRINT"LINE 85 - FILTER OFF" 
85 PLAY "V2 06 TO U7 XO H CO Q EF I GA S B M" 
90 PRINT " SAME AS LINE 85 - FILTER ON" 
95 PLAY "V2 06 TO U7 XI H CD Q EF I GA S B M" 
100 PRINT"LINE 105 - FILTER OFF" 
105 PLAY "VI 04 T4 u8 XO H .C 0 Q I EF I S GA S .B M" 
110 PRINT"SAME AS LINE 105 - FILTER ON" 
U5 PLAY "VI 04 T4 U8 Xl H .C 0 Q I EF I S GA 5 .B H" 

153 USING C128 MODE-Sound and Music in C128 Mode 



Line 10, the ENVELOPE statement, specifies the envelope for piano 
(0), which sets the attack to 0, decay to g, sustain to 0 and release to 
O. It also selects the variable pulse waveform with a pulse width of 
1700. Line 15 sels the VOLume to B. Line 20 chooses the TEMPO to 
be 10. 

Line 35 FILTERs the notes that are played in hnes 30 through 115. It 
sets the FILTER cutoff frequency to 1200. In addition, line 35 turns 
off the low-pass and band-pass filters with the two zeros following 
the cutoff frequency (1200). The high-pass filter is turned on with the 
1 foHowing the two zeros. The resonance is set to 10 by the last 
parameter in the FILTER statement. 

Line 30 PLAYS the notes C, D, E, F, G, A, B in that order. Line 45 
PLAYS the same notes as line 30, but it specifies the SID control 
characters US as volume levelS, V1 as voice 1 and OS as octave 5. 
Remember, the SID control characters allow you to change the syn­
thesizer controls within a string and exercise the most control over 
the synthesizer. Line 65 specifies the control characters U7 for vol­
ume level 7, V3 for voice 06 for octave 6 and XO to turn off the filter. 
Line 65 PLAYS the same notes as lines 30 and 45, but in a different 
volume, voice and octave. 

Line 85 has the same volume, voice and octave as line 65, and it 
specifies half notes for the notes C and D, quarter notes for the 
notes E and F, eighth notes for notes G and A and a sixteenth note for 
the B note. Line 105 sets the volume at 7, voice 1, octave 4 and turns 
off the filter. lt also specifies the C note as a dotted half note, E as a 
sharp quarter note, G and A as flat eighth notes and B as a dotted 
sharp sixteenth note. 

Advanced Filtering 

Each of the previous FILTERing examples used only one filter at a 
time. You can combine the SID chip's three filters with each other to 
achieve different filtering effects. For example, you can enable the 
low-pass and high-pass filters at the same time to form a notch 
reject filter. A notch reject filter allows the frequencies below and 
above the cutoff to pass through the SID chip, while the frequencies 
close to the cutoff frequency are filtered. See Figure 7-10 for a 
graphic representation of a notch reject filter. 

154 USING C128 MODE-Sound and Music in e12S Mode 



o 
w 

'" '" ~ 
~ z 
~ 
o 
~ 
< 

CUTOFF 

FREQUENCY 

Figure 7·10. Notch Reject Filter 

You can also add either the low·pass or high·pass filter to the band­
pass fllter to obtain interesting effects_ By mixing the band-pass filler 
with the low-pass filler, you can select the band of frequencies 
beneath the cutoff frequency and below. The rest are filtered out. 

By mixing the band-pass and the high-pass filters, you can select the 
band of frequencies above the cutoff frequency and higher. All the 
frequencies below the cutoff are filtered out. 

Experiment with the different combinations 01 filters to see aU the 
different types of accents you can place on your musical notes and 
sound effects_ The filters are designed to perlect the sounds created 
by the other components of the SID chip. Once you have created the 
musical notes or sound effects with the SID chip, go back and add 
the FILTERing to your programs to make them as crisp and clean as 
possible. 

Now you have aU the information you need to write your own musical 
programs in Commodore 128 BASIC. Experiment with the different 
waveforms, ADSR settings, TEMPOs and FILTERing. Look in a book 
of sheet music and enter the notes from a mUSical scale in sequence 
within a play string. Accent the notes in the string with the SID con­
trol characters. You can combine your Commodore 128 music syn­
thesizer with C128 mode graphics to make your own videos or "mov­
ies," complete with sound tracks. 

155 USING C128 MODE-Sound and MusIc In C128 Mode 



Coding A Song 
from Sheet Music 

This sectIon provides a sample piece of sheet music and illustrates 
how to decode notes from a mUSical stall and translate them into a 
form the Commodore 128 can understand_ This exercise is substan­
Hally faster and easier If you know how to read music. However, you 
don't have to be a mUSician to be able to play the tune on your Com­
modore 128. For those of you who cannot read music, Figure 7·11 
shows how a tYPical musical staff IS arranged and how the notes on 
the staff are related to the keys on a piano. 

~ .­
OABCDEFOABCDEFOABCDEF 

II! it H H i n d H j H r i rr r 
c F Middl. C 

c 
Figure 7-11 . Musical Staff 

Figure 7·12 IS an excerpt from a composItion titled Invention 13 
(fnventio 13 in Italian), by Johann Sebastian 8ach. Although this com· 
position was written a few hundred years ago, it can be played and 
enjoyed on the most modern of computer synthesizers, such as the 
SID chip In the Commodore 128. Here are the opening measures of 
Invention 13 --, 

_fT "'_"""""~ 
0'" "'-'t""OOIII' -- Inventio 13 

Figure 7·12. Part of Bach's Im'ention 13 

156 USING e12S MODE-Sound and MUSIC in C128 Mode 



-

The best way to start coding a song into your Commodore 128 is by 
breaking the notes down into an intermediate code. Write down the 
upper staff notes on a piece of paper. Now write down the notes for 
the lower staff. Precede the note values with a duration code. For 
instance, precede an eighth note with an 8, precede a sixteenth note 
with a 16, and so on. Next, separate the notes so the notes on the 
upper staff for one measure are proportional in time with the notes 
for one measure on the lower staff. 

If the musical composition had a third staff, you would separate it so 
the duration is proportional to the two other upper staffs. Once the 
notes lor all the staffs are separated Into equal durations, a separate 
dedicated voice would play each note lor a particular staff. For 
example, voice 1 would play the upper staff, voice 2 will play the 2d 
staff and voice 3 would play the lowest staff if it existed. 

Let's say the upper statt begins with a string of four eighth notes. In 
addition, say the lower staff begins with a string of eight sixteenth 
notes. Since an eighth note is propor tional in time to two sixteenth 
notes, separate the notes as shown in Figure 7·13. 

~= U ~ E W 
V2 = 16D16E 16F16G 16A16B 16C16D 

Figure 7·13. Synchronizing Notes for Two Voices 

Since the synchronization and timing in a musical composition is 
critical , you must make sure the notes in the upper staff for voice 1, 
for example, are in time agreement with the notes in the lower staff 
for voice 2. The first note in the upper staff in Figure 7·12 is an A 
eighth note. The first two notes for voice 2 are D and E sixteenth 
notes. In this case, you must enter the voice 1 eighth note in the 
PLAY string first, then follow the voice 2 sixteenth notes immediately 
after it. To continue the example, the second nole in Figure 7·12 for 
voice 1 (the upper staff) is a B eighth note. The 8 eighth note is equal 
in time to the two sixteenth notes, F and G, which appear in the bot· 
tom staff for voice 2. In order to coordinate the timing, enter the B 
eighth note in the string for voice 2 and follow it with the two six· 
teenth notes, F and G, for voice 2. 

157 USING C128 MODE-Sound and Music in C12S Mode 



As a rule, always start with the note with the longer duration. For 
example, if a bar starts with a series of two sixteenth notes on the 
lower staff for voice 2 and the upper staff starts with an eighth note 
for voice 1, enter the eighth note in the string first since it must play 
for the duration while the two sixteenth notes are being fetched by 
the Commodore 128. You must give the computer time to play the 
longer note first, and then PLAY the notes of shorter duration, or else 
the composition will not be synchronized. 

Here's the program that plays Invention 13. Enter it into your C128, 
SAVE it for future use, and then RUN it. 

10 REM INVENTION 13 BY J S BACH 
20 TEMPO 6 
)0 PLAY·VI04T7UeXO":REM VOICE l=ORGAN 
40 PLAY·V204T7uexO":REM VOICE' 2:PIANO 
SO REM FIRST MEASURE 
60 AS-fOnOI IAVIO)I EV202QAVlO)SA04C03BEV2021 fev lO]SB04DVl04 rcv202SAEM" 
7 0 BS" ·VI04 I EV 202SA03cvl 0 3 I lev 2025 BEV 1 0 4 I EV202S BO]D" 
80 REM SECOND MEASURE 
90 CS."V2031CV}O]SAEV202IAVt03SA04CV2Q2IIGVIO]SBEV202IEVtO3SB040" 
100 D$."vt04Icv202SAEVIO]IAV202SAO]CVI04QRV202SBEB030" 
110 REM REM ~HIRO MEASURE 
1 20 E$E"V20] I CV 104 SREV202 I AV 1 04SCEV203 Icvl 0 3 SA04eV202 I AV 1 02SEG" 
1]0 rs""·VI03IFV203SD02AVIO]IAV202SFAVI04 IOV202SDFV104 r FV20l SA02C " 
140 REM FOURTH MEASURE 
150 GS="V201 IBVI04SFOV2021 DVI03SB04DV202 IcvIQ3SGBV202 IBVlo3SDF" 
160 H$"'''V 10] I EV202SGEVlO 3IGV202SEGV 10 4 I CV202 SCEV I 04 I EV20 I SGB" 
170 REM FIFTH MEASURE 
180 IS .. ''V201 IAVl04SECV202ICVl03SA04cvlO3! FV2 02S0FVIQ4 IOV20l SB020 " 
190 JS""V201 IGV103SDBV201 IBVIO]SGBVlO3IEV202SCEVI04 ICV201 SA02e" 
200 REM SIXTH MEASURE 
210 RS ". ·V20lIFvl04SeO)AV201IOVIO)SFAVI03IDV201SG02GVI03IBV202SFG" 
220 MS=''V201 IAvt o4Seo3Av202I'FVl04SCEV201IBvto4SDQ3BV2021IGvt04SDF" 
230 REM SEVENTH MEASURE 
240 NS~·V202IcvI04SECV202IAVl04SEGV202IDV104SiEV202I$BVl04SOC" 
250 OS~"V202I'GVl03SB04CV202 IFVI 04SDEV202IovI04SFDV201IBVIO4S'GO" 
260 REM EIGHTH MEASURE 
270 PS-"V202IfCVI04SBov202IAVI04SCAV202IDVI04SFOV202IEVl03SB040" 
280 QS="V202IFVI03S'CBV202I,OVt04SCO]AV202IEVl03SEAV202IEV10]SBIG" 
290 REM NINTH MEASURE 
300 RS- wV201HAVI0)SAECE02QA" 
310 PLAY AS:PLAY B$:PLAY C$:PLAY D$:PLAY E$ 
320 PLAY F$:PLAY G$:PLAY H$:PLAY I$:PLAY J$ 
330 PLAY K$ : PLAY M$:PLAY N$:PLAY O$:PLAY P$ 
340 PLAY QS:PLAY R$ 

158 USING C128 MODE-Using 80 Column s 



-
You can use the techniques described in this section to code your 
favor ite sheet music and play it on your Commodore 128. 

You now have been introduced to most of the powerful new com­
mands of the BASIC 7.0/anguage that you can use in C128 mode. In 
the foffowing section you will/earn to use both 40-and BO-column 
screen displays with the Commodore 128. 

159 USING C128 MODE-Using 80 Columns 





SECTION 8 INTRODUCTION 163 
Using 80 Columns 

THE 40180 KEY 163 

VIDEO PORTS AND MONITORS 164 
Connecting a Monitor 164 
Types of Monitors 164 

Composite Monitors 164 
RGBI Monitors 165 
Dual Monitors 165 

USING PREPACKAGED 80-COLUMN SOFTWARE 165 

CREATING 80-COLUMN PROGRAMS 165 

USING 40 AND 80 COLUMNS TOGETHER 166 

161 USING C128 MODE-Using 80 Columns 



'--' 

-



Introduction 

The 40/80 Key 

163 

In C128 and CP/M modes, you can choose between a 40- and 80-
column screen display, You could even use both in a single program. 

Each screen size has special uses. The 40-column screen is the 
same size screen the Commodore 64 uses. With the 40-column 
screen you can use the Commodore 128's full graphics capabilities. 
You can draw circles. graphs, sprite characters, boxes and other 
shapes in high-resolution or multicolor graphic modes. You can also 
use sprites. 

If you are using 80-columns, you get twice the number of characters 
per program line. In aO-column mode, you can use the standard 
graphic characters and colors available through the keyboard. 

You can also wri te programs using two monitors to take advantage 
of both screen display formats with each monitor screen performing 
different aspects of the program. For example, text output could be 
displayed on the 80-column monitor while graphics output could be 
seen on the 40-column monitor. 

You can use the 40f80 key to set the screen width as either 40 or 80 
columns. Pressing this key will only have an effect when one of the 
following actions is taken: 

1. Power is turned ON . 
2. The RESET button is pressed. 
3. The RUN/STOP and RESTORE keys are pressed simultane-

ously. 

The 40/80 key acts like a SHIFT/LOCK key: it locks when you press it, 
and does not release until you press it again. If this key is up (not 
pressed) when one of the three conditions above occurs, the screen 
is set to 40 columns. If before power-up you press the key down, 
causing it to lock, and one of the three conditions listed above then 
occurs, the screen is set to 80 columns. Once the computer is run­
ning in one screen format (40 or 80 columns), you cannot switch to 
the other format using the 40/80 key. In this case you must press and 
release the ESC key and then press the X key. 

USING C128 MODE-Using 80 Columns 



Video Ports and 
Monitors 

Connecting a Monitor 

Make sure that you connect your monitor properly to the ports on the 
back of your computer. There are two openings: one is labeled 
VIDEO and one is labeled RGBI. 

VIDEO is the connecting port for 40-column composite video moni­
tor while RG81 is used for SO-column monitors. Dual monitors like the 
Commodore 1902, which can display either 40-column composite or 
80 column RG81 screens, are connected to both ports. 

Types of Monitors 

Composite 
Monitors 

Composite monitors are designed to display 40-
column output on their screens. Examples of 
composite monitors are the Commodore 1701 
and 1702 monitors. These monitors can be used 
for all 40-column programs and programming in 
all three modes. However. they cannot be used 
for BO-column work. 

164 USING C128 MODE-Using 80 Columns 



Using 
Prepackaged 80· 
Column Software 

Creating 80· 
Column Programs 

ROBI Monitors 

Dual Monitors 

RGBI monitors are specially designed to display 
80·column output. Although RGBI stands for 
Red Green Blue Intensity. RGBI monitors can be 
either color or monochrome (single color). The 
most popular monochrome monitors use green 
or amber displays. An RGBI monitor connected 
to the RGBI port can handle 80·column output in 
both C128 and CP/M modes. 

Dual monitors like the Commodore 1902 can 
provide either a composite video (40·column) or 
RGBI (BO·column) display. A dual monitor con· 
nects to both video ports. A swilch on the moni· 
tor lets you selecl either screen output. The 401 
80 key on your computer determines the type of 
screen display upon power·up. Make sure sure 
the 40/80 key setting corresponds to the 40/80 
column slide switch setting on the front control 
panel of the monitor. NOTE: You can still switch 
back and forth between 40 and 80 column out· 
put by pressing and releasing the ESC key and 
then pressing the X key. regardless of which 
position Ihe 40/80 key is in. 

Most CP/M programs utilize an 80·column screen. as do many of the 
other buisness application packages you can use In C12B mode. 
Since the width of a normal printed page is BO columns. an 80· 
column wordprocessor can display information on the screen 
exactly as that information will appear on paper. Spreadsheet pro· 
grams often specify an BO·column format . in order to provide enough 
space for the necessary columns and categories of information. 
Many database packages and telecommunications programs also 
require or can use an BO·column screen. 

In addition to running prepackaged software. the BO·column screen 
widlh can be useful in designing your own programs. You've proba· 
bly noticed what happens when you type a line that is wider than 40 
columns on a 40·column screen. The lines "wrap around"-that is. 
they continue onto the next screen line. This may cause confusion in 
reading the line. and can even lead to programming errors. An 
BO·column screen helps eliminate these problems. In general, 
an BO'cotumn screen allows for a clearer screen and better 
organization. 

165 USING C128 MODE-Using 80 Columns 



Using 40 and 80 
Columns Together 

The main advantage of 40-column composite video output is the 
availability of bit mapped graphics, while 80 columns gives you out­
put for word processing and other business applications. If you have 
two monitors, you can write programs that are "shared", using the 
text feat ures 80 columns affords you and the graphics of 40 
columns. A special command, (GRAPHIC 1,1) can be used within a 
program to transfer the execution of graphics commands to the 40-
column display. If you have a dual monitor (one that can display both 
40- and 80-column formats) you can place GRAPHIC 1,1 statements 
in your program so that graphics will be output in 40-column screen 
format. In order to view the graphic output, however, you will need to 
change the video switch on the monitor to 40 columns. If you write a 
program like this, it might be a good idea to include on-screen direc­
tions to the user to change the video switch. 

For example, you might write a program which asked the user to 
input data, then created a bar graph based on the user's input. The 
message "CHANGE TO 40 COLUMN TO VIEW GRAPH" would tell 
the user to swi tch modes and see the results. 

As noted previously, you can switch between the 80- and 40-column 
formats after power up, with the ESCapelX sequence. 

166 USING C128 MODE-Using 80 Columns 



The following example shows how dual screens can be used within a 
program: 

10 GRAPHIC 5 , 1 :REM THIS STATEMENT SWITCHES TO 80 COLUMN TEXT MODE 
20 PRINT "[J START IN 40 COLUMN OUTPUT":PRINT 
30 PRJNT"SLIDE THE SWITCH ON THE FRONT OF THE 1902 DUAL MONITOR TO THE MJDDLEM 
40 PRINT:PRINTMPRESS RETURN WHEN READY" 
50 GRAPHIC 0,1 
60 PRINT:PRINT"PRESS RETURN WHEN READY·:GETKEY AS:IF AS<) CHRS(13)THEN 60 
70 COLOR 1,5: COLOR 4,I:COLOR 0,1 
ao GRAPHIC 2,1 :CHAR l , a,IB,"BIT MAP/TEXT SPbIT SCREEN":REM SELECT SPLIT SCREEN 
90 FOR 1-70 TO 220 STEP 20 :CIRCLE I,I , 50,30 , JO : NEXT 
100 PRINT" SWITCH TO 80 COLUMN OUTPUT" 
110 PRINT" SLIDE THE MONITOR SWITCH ON THE FRONT TO THE EXREME RIGHT" 
120 PRINT· PRESS THE RETURN KEY WHEN READY":GETKEY AS : IF AS<) CHRS(I31THEN 120 
130 GRAPIIIC 5,1 :REM THIS STATEMENT SWITCHES TO aD COLUMN TEXT MODE 
140 FOR J-lTO 10 
150 PRINT " NOW YOU ARE IN 80 COLUMN TEXT OUTPUT" 
160 NEXT :PRINT 
170 PRINT"NOW SWITCH BACK TO 40 COLUMN OUTPUT":PRINT 
180 PRINT "SLIDE THE SWITCH ON THE FRONT OF THE MONI TOR TO THE MIDDLE " :PRINT 
190 PRINT"PRESS THE RETURN KEY WHEN READY·:GETKEY AS:IF A$() CHR$(IJ)THEN 190 
200 GRAPHIC O, l:REM THIS STATEMENT SWITCHES TO 40 COLUMN TEXT MODE 
210 POR J-1TO 70 
220 PRINT "NOW YOU ARE IN 40 COLUMN TEXT OUTPUT"" 
230 NEXT 

Each screen display format offers certain advantages; yet the two 
types of displays can be combined in a program to complement 
each other. Using a 40-column screen, you gel the full power of 
advanced BASIC graphics. The SO-column display gives you more 
space for your own programs. In addition, it lets you run the wide 
variety of software designed to run on an SO·column screen. 

* .. *.* .... ** •• *.*~* ••••• * ••••••••• • •••••••••••• * •••• **.* 

The sections of this chapter have introduced you to the many fea· 
tures and capabilities provided by the Commodore 128 in C128 
mode. The following chapter tells you how to use the Commodore 
128 in C64 mode. 

167 USING C128 MODE-Using 80 Columns 





CHAPTER 

USING C64 MODE 





SECTION 9 USING BASIC 2.0 173 
Using the 
Keyboard In C64 KEYBOARD CHARACTER SETS 173 
Mode 

USING THE TYPEWRITER·STYLE KEYS 173 

USING THE COMMAND KEYS 173 

MOVING THE CURSOR IN C64 MODE 173 

PROGRAMMING FUNCTION KEYS IN C64 MODE 174 

17 1 USING C64 MODE-Using the Keyboard in C64 Mode 





-

USING BASIC 2.0 

Keyboard 
Character Sets 

Using The 
Typewrlter·Style 
Keys 

Using The 
Command Keys 

Moving The 
Cursor In C64 
Mode 

The entire BASIC 2.0 language built into the Commodore 64 com· 
puter has been incorporated into the BASIC 7.0 language of the 
Commodore 128, You can use the BASIC 2.0 commands in both 
C128 and C64 modes. Refer to Sections 3 and 4 in Chapter II for a 
description of these commands. 

In the keyboard illustration in Section 3. the shaded keys are the 
ones thaI can be used in C64 mode. The keyboard in C64 mode has 
the same two character sets as in C128 mode: 

-Upper-casefgraphic character set 
-Upper/lower-case character set 

When you enter C64 mode, the keyboard is in the upper-easel 
graphic character set. so that everything you type is in capital let· 
ters. In C64 mode you can only use one character set at a time. To 
switch back and forth between character sets, press the SHIFT key 
and the " key (the COMMODORE key) at the same time. 

AS in C128 mode, you can use the typewriter·style keys in C64 mode 
to type both upper-case letters (capitals) and lower·case letters 
(small letters). You can also type the numerals shown on the top row 
of the main keyboard. In addition, you can type the graphics symbols 
on the fronts of the keys. 

Most COMMAND keys (Le., the keys that send messages to the com­
puter.like RETURN. SHIFT. CTRL. etc.) work the same in C64 mode 
as they do in C128 mode. 

The only difference is that in C64 mode, you can only move the cur­
sor by using the two CRSR keys at the bottom-right corner of the 
main keyboard. (In C128 mode, you can also use the four arrow keys 
located just above the top right side of the main keyboard.) 

In C64 mode, you use two CRSR keys on the main keyboard and the 
SHIFT key to move the cursor, as described in Section 3. 

173 USING C64 MODE-Using the Keyboard in C64 Mode 



Programming 
Function Keys In 
C64 Mode 

The four keys to the right side of the keyboard, just above the 
numeric keypad, are called function keys. The keys are marked F1. 
F3, F5 and F7 on the tops and F2, F4, F6 and F8 on the fronts. These 
keys can be programmed-that is, they can be instructed to per­
form a specific task or function. For this reason, these keys are 
often called programmable function keys. 

You must hold down the SHIFT key to perform the functions associ­
ated with the markings on the front of the keys-that is, F2, F4, F6 
and F8. Therefore, these keys are sometimes called the SHIFTed 
programmable function keys. 

The function keys in C64 mode do not have a printed character 
assigned to them. They do, however, have CHR$ codes assigned. In 
fact, each of them has two CHR$ codes-one for when you press 
the key by itself, and one for when you press the key while holding 
down the SHIFT key. To get the even-numbered function keys, hold 
down the SHIFT key while pressing the function key. For example, to 
get F2, hold down SHIFT and press F1. 

The CHR$ codes for the F1-F8 keys range from 133 to 140. However, 
the codes are not assigned to the keys in numerical order. The keys 
and their corresponding CHR$ codes are as follows: 

F 1 CHR$(133) 
F2 CHR$(137) 
F3 CHR$(134) 
F4 CHR$(138) 
F5 CHR$(135) 
F6 CHR$(139) 
F7 CHR$(136) 
Fa CHR$(140) 

You can use the function keys in your program in several ways. To do 
this, you'll need to use the GET statement. (See Section 4 for a 
description of the GET statement.) As an example, the program 
below prepares the F1 key to print a message on the screen. 

10 ? " PRESS F1 TO CONTtNUE" 
20 GET AS:fF AS = " ''THEN 20 
30 tF A$()CHRS(133) THEN 20 
40 ? " YOU HAVE PRESSED F1" 

174 USING C64 MODE-Using the Keyboard in C64 Mode 

-



Lines 20 and 30 do most of the work in this program. Line 20 makes 
the computer wait until a key is pressed before executing any more 
of the program. Note that when the command immediately after 
THEN is a GOTO, only the line number is necessary. Also note that a 
GOTO command can GOTO the same line it is on. Line 30 tells the 
computer to go back and wait for another key to be pressed unless 
the F1 key has been pressed. 

175 USING C64 MODE-Using the Keyboard in C64 Mode 



<--

<--



SECTION 10 
Storing And 
Reusing Your 
Programs In C64 
Mode 

FORMATTING A DISK IN C64 MODE 

THE SAVE COMMAND 
SAVEing on Disk 
SAVEing on Cassette 

THE LOAD AND RUN COMMANDS 
LOADing and RUNning from Disk 
LOADing and RUNning from Cassette 

OTHER DISK·RELATED COMMANDS 
Verifying a Program 
Displaying Your Disk Directory 
Initializing a Disk Drive 

177 USING C64 MODE-Storing and Reusing Your Programs In C64 Mode 

179 

179 
179 
180 

180 
180 
180 

181 
181 
181 
181 





Formatting a Disk 
In C64 Mode 

The SAVE 
Command 

Once you have edited a program. you will probably want 10 store It 
permanently so that you will be able to recall and use It at some later 
time. To do this you 'll need either a Commodore disk drive or the 
Commodore Oatassette. 

To store programs on a new (or blank) disk. you must first prepare the 
disk to receive data. This is called formatting the disk. Make sure that 
you turn on the disk drive before inserting any disk. 

To format a blank disk in C64 mode, you type this command: 

OPEN 15,8,15: PRINT# 15," NO:NAME,ID" RETURN 

In place of NAME, type a disk name of your choice; you can use up 
to 16 characters to identify the disk. In place of 10, type a two­
character code of your choice (such as W2 or 10). 

The cursor disappears during the formatting process. When the cur­
sor bl inks again, type the following command: 

CLOSE 15 REIURN 

NOTE: Once a disk is formatted in C64 or C128 mode, that disk can 
be used in either mode. 

You can use the SAVE command to store your program on disk 
or tape. 

SAVElng on Disk 

If you have a Commodore single-disk drive, you can store your pro­
gram on disk by typing: 

SAVE "PROGRAM NAME",8 :J!ETURN 

The 8 indicates to the computer that you are using a disk drive to 
store your program. 

The same rules apply for the PROGRAM NAME whether you are 
using disk or tape. The PROGRAM NAME can be anything you want 
it to be. You can use letters, numbers andlor symbols-up to 16 
characters in all. Note that you must enclose the PROGRAM NAME 
in quotation marks. The cursor on your computer disappears while 
the program is being SAVEd, but it returns when the process is com­
pleted. 

179 USING C64 MOCE-Sloring and Reusing Your Programs In C64 Mode 



The LOAD And 
RUN Commands 

SAVEing on Cassette 

If you are using a Datassette to store your program, insert a blank 
tape in the recorder, rewind the lape (if necessary) and type: 

SAVE "PROGRAM NAME" RETURN 

Once a program has been SAVEd, you can LOAD it back into the 
computer's memory and RUN it anytime you wish. 

LOADing and RUNning from Disk 

To load your program from a disk, type: 

LOAD" PROGRAM NAME",8 JlETURN 

Again. the 8 indicates to the computer that you are working with a 
disk drive. 

To RUN the program, type RUN and press (RETURN). 

LOADing and RUNning from Cassette 

To LOAD your program from cassette tape, type: 

LOAD " PROGRAM NAME" RETURN 

If you do not know the name of the program, you can type: 

LOAD RETURN 

and the next program on the tape will be retrieved. 

You can use the counter on the Datassette to identify the starting 
position of the programs. Then, when you want to retrieve a pro­
gram, simply wind the tape forward from 000 to the program's start 
location, and type: 

LOAD jtETURN 

In this case, you don't have to specify the PROGRAM NAME; your 
program will load automatically because it is the next program on 
the tape. 

NOTE: During the LOAD process, the program being LOADed 
is not erased from the tape; it is simply copied into the com­
puter. However, LOADing a program automatically erases any 
BASIC program that may have been in the computer 's memory. 

160 USING C64 MODE-Storing and Reusing Your Programs in C64 Mode 

-



Other Dlsk­
Related 
Commands 

Verifying A Program 

To verify that a program has been correctly saved or loaded, type: 

VERIFY" PROGRAM NAME",8 RETURN 

If the program in the computer is identical to the one on the disk, the 
screen display will respond with the letters "OK," 

The VERIFY command also works for tape programs. You type: 

VERIFY" PROGRAM NAME" RETURN 

Note that you do not need to enter the comma and the number 8, 
since 8 indicates that you are working with a disk program. 

Displaying Your Disk Directory 

To see a list of the programs on your diSk, first type: 

LOAD"$",8 RETURN 

The cursor disappears during this process. When the cursor reo 
appears, type: 

LIST RETURN 

A list of the programs on your disk will then be displayed. Note that 
when you load the directory, any program that was in memory is 
erased. 

Initializing A Disk Drive 

If the disk drive's ready light IS blinking, it indicates a disk error. You 
can restore the disk drive to the condition it was In before the error 
occurred by using a procedure called INITIALIZING. To initialize a 
drive, you type: 

OPEN 1,8,15,"I":ClOSE 1 RETURN 

If the light is still blinking, remove the disk and turn the drive off, 
then on. 

For further information on SAVEing and LOADing your programs. 
refer to your disk drive or Datassette manual. Also consult the 
LOAD and SAVE command descriptions in Chapter V. BASIC 7.0 
Encyclopedia. 

181 USING CM MODE-Stormg and Reusing Your Programs In C64 Mode 





CHAPTER 

USING CP/M MODE 



-' -



SECTION 11 
Introduction To 
CP/M 3.0 

WHAT CP/M 3.0 IS 

WHAT YOU NEED TO RUN CP/M 3.0 

GETTING STARTED WITH CP/M 3.0 
Loading or Booting CP/M 3.0 
The Opening CP/M Screen Display 

THE COMMAND LINE 
Types of Commands 
How CP/M Reads Command Lines 

185 USING CP/M MOCE-Introductlon to CP/M 3.0 

187 

187 

188 
188 
188 

190 
190 
191 



. __ . 



What CP/M 3.0 Is 

What You Need to 
Run CP/M 3.0 

CPIM is a product of Digital Research, Inc. The version of CPIM used 
on the Commodore 128 is CPIM Plus Version 3.0. In this chapter, 
CPIM is generally referred to as CPIM 3.0, or simply CP/M. This chap­
ler summarizes CPIM on the Commodore 128. For detailed informa­
tion on CPIM 3.0, liH out and return the postage-paid card included in 
this chapter. 

CPIM 3.0 is a popular operating system for microcomputers. As an 
operating system, CPIM 3.0 manages and supervises your comput­
er's resources, including memory and disk storage, the console 
(screen and keyboard), printer, and communication devices. CPIM 
3.0 also manages information stored in disk files. CPIM 3.0 can copy 
files from a disk to your computer's memory, or to a peripheral 
device such as a printer. To do this, CPfM 3 places various programs 
in memory and executes them in response to commands you enter 
at your console. Once in memory, a program executes through a set 
of steps that instructs your computer to perform a certain task. 

You can use CP/M to create your own programs, or you can choose 
from the wide variety of available CP/M 3.0 application programs. 

The general hardware requirements for CP/M 3.0 are a computer 
containing a Z80 microprocessor, a console consisting of a keyboard 
and a display screen, and at least one floppy disk drive. For CP/M 3.0 
on the Commodore' 28 Personal Computer, the Z80 microprocessor 
is buill-in: the console conSists of the full Commodore 128 keyboard 
and an 80-column monitor; and the disk drive is the new Commodore 
1571 fast disk drive. In addition, there are two CPfM disks packed in 
the computer carton-one containing the CP/M 3.0 system and an 
extensive HELP utility program, and the other containing a number 
of other utility programs. 

NOTE: Although CP/M can be used with a 40-column monitor, only 
40 columns can be displayed at one time. To view all 80 columns of 
the display, you must scroll the screen horizontally by pressing the 
CONTROL key and the appropriate cursor key (Iefl or right). 

187 USING CP/M MODE-Introduction to CP/M 3.0 



Oetting Started 
With CP/M 3.0 

The following paragraphs tell you how to start or " boot " CP/M 3.0, 
how to enter and edit the command line, and how to make back-up 
copies of your CP/M 3.0 disks. 

Loading Or Booting CPIM 3 .0 

Loading or " booting" CP/M 3.0 means reading a copy of the operat­
ing system from your CPIM 3.0 system disk into your computer's 
memory. 

You can boot CP/M 3.0 in several ways. If your computer is off, you 
can boot CP/M by first turning on your disk drive and Inserting the 
CP/M 3.0 system disk, and then turning on the computer. CP/M 3.0 
will load automatically. If you are already in C128 BASIC mode, you 
can boot CP/M 3.0 by inserting the CP/M system disk into the drive 
and then typing the BASIC command BOOT. CPIM 3.0 will then load. 
In C128 mode, you can also boot CP/M by inserting the system disk 
and pressing the RESET button. 

If you are in C64 mode, and you want to enter CP/M mode, first turn 
off the computer. Then load the CP/M system disk in the drive and 
turn on the computer. 

Caution: Always make sure that the disk is fully inserted in the 1571 
drive before you close the drive door 

In CPIM 3.0 on the Commodore 128, the user has a 59K TPA(Tran' 
sient Program Area), which In effect is user RAM. 

The Opening CPIM Screen Display 

After CP/M 3 is loaded into memory, a message similar to the follow­
ing is displayed on your screen: 

188 USING CP/M MODE-Introduction to CP/M 3_0 



An important part of the opening display is the following two­
character message: 

A ) 

This is the CP/M 3.0 system prompt The system prompt tells you 
that CP/M is ready to read a command entered by you from your 
keyboard. The prompt also tells you that drive A is your default drive. 
This means that until you tell CP/M to do otherwise, it looks for pro· 
gram and data files on the disk in drive A. It also tells you that you are 
logged in as user 0, simply by the absence of any user number other 
than O. 

NOTE: In CP/M a single disk drive is identified as drive A. This is 
equivalent to unit number 8, drive 0 in C128 and C64 modes. Usually, 
the maximum number of drives in CP/M 3.0 is four. Additional drives 
are identified as drives B, C, etc. 

189 USING CP/M MODE-Introduction to CP/M 3.0 



The Command 
Line 

CP/M 3.0 performs tasks according to specific commands thai you 
type at your keyboard. These commands appear on the screen in 
what is caUed a command line. A CP/M 3.0 command line is com­
posed of a command keyword and an optional command tail_ The 
command keyword identifies a command (program) to be executed. 
The command tail can contain extra information for the command, 
such as a filename or parameters. The following example shows a 
command line. 

A) DIR MyrlLE 

Throughout this chapter, the characters that a user would Iype are in 
slanted (italic) bold face type 10 distinguish them from characters 
that the system displays. In this example, DIR is the command key­
word and MYFILE is the command tail. To send the command line to 
CP/M 3.0 for processing, press the RETURN key, as indicated in _ .... 
this book by the - RETURN symbol. 

As you type characters at the keyboard, they appear on your screen, 
The cursor moves to the right as you type. If you make a typing error, 
press either the INST DEL key or CTRL-H to move the cursor to the 
left and correct the error, CTRL is the abbreviation for the CONTROL 
key. To specify a control character, hold down the CTRL key and 
press the appropriate letter key, (A list of control characters and their 
uses is given in Section 13.) 

You can type the keyword and command tail in any combination of 
upper-case and lower·case letters. CP/M 3.0 interprets all letters in 
the command line as uppercase. 

Generally, you must type a command line directly after the system 
prompt. However, CP/M 3.0 does allow spaces between the prompt 
and the command keyword. 

Type. Of Commands 

CPfM 3,0 recognizes two different types of commands: built·in com· 
mands and transient utility commands. Built·in commands execute 
programs that reside in memory as a part of the CP/M operating 
system. Built-in commands can be executed immediately. Transient 
utility commands are stored on disk as program files. They must be 
loaded from disk to perform their task. You can recognize transient 
utility program files when a directory is displayed on the screen 
because their lilenames are followed by a period and COM (.COM). 
Section 14 presents lists of the CP/M built-in and transient utility 
commands. 

190 USINQ CP/M MODE-IntroductIon to CP/M 3.0 



For transient utilities, CP/M 3.0 checks only the command keyword. 
Many utilities require unique command tails. If you include a com· 
mand tail , CP/M 3.0 passes it to the utility without checking it. A 
command tail cannot contain more than 128 characters. 

How CP,M Read. Command Lin •• 

Let's use the DIR command to demonstrate how CP/M reads com· 
mand lines. DIR, which is an abbreviation for directory, tells CP/M to 
display a directory of disk files on your screen. Type the DIR keyword 
after the system prompt. and press RETURN : 

A )DfR "'FTI!RN 

CP/M responds to this command by displaying the names of all the 
files that are stored on whatever disk is in drive A. For example, if the 
CP/M system disk is in disk drive A. a list of filenames like this 
appears on your screen: 

A: PIP COM : ED COM : CCP COM: HELP COM : HELP HLP 
A: DIR COM: CPM SYS 

CP/M 3.0 recognizes only correctly spelled command keywords. If 
you make a typing error and press RETURN before correcting your 
mistake, CP/M 3.0 repeats or "echoes" the command line, followed 
by a question mark. For example, suppose you mistype the DIR 
command, as in the following example: 

A)DJR £BmIlIN ' 

CP/M replies with: 

OJR? 

This tells you that CP/M cannot find a command keyword spelled 
DJR. To correct typing errors like thi s, you can use the INST/DEL key 
to delete the incorrect letters. Another way to delete characters is to 
hold down the CTRL key and press H to move the cursor to the left. 
CP/M provides a number of other control characters that help you 
edit command lines. Section 13 tells how to use contrOl characters 
to edit command lines and other information you enter at your 
console. 

DIR accepts a Iilename as a command tail. You can use DIR wilh a 
filename to see if a specific file is on the disk. For example, to check 
that the file program MYFllE is on your disk. type: 

A )DfR MYF/LE ~EIURN ' 

191 USINO CP/M MODE-Introduction to CP/M 3.0 



CP/M 3.0 performs this task by displaying either the name of the file 
you specified. or the message: 

No File 

Be sure you type at least one space after DIR to separate the com­
mand keyword from the command tail. If you do not, CP/M 3.0 reo 
sponds as follows: 

A )DIRMYFILE dlUUNI 
DIRMYFllE? 

192 USING CP/M MODE-Introduction IOCP/M 3.0 



SECTION 12 
Flies, Disks and 
Drives In CPIM 
3.0 

WHAT IS A FILE? 

CREATING A FILE 

195 

195 

NAMING A FILE 195 
File Specification 195 

Drive Specifier 196 
Filename 196 
Filel ype 196 
Password 197 
Sample File Specificat ion 197 

User Number 197 
Using Wildcard Characters to Access More Than 

One File 198 
Reserved Characters 198 
Reserved Filetypes 199 

HOW TO MAKE COPIES OF YOUR CP/M 3.0 DISKS 
AND FILES 200 

Making Copies With a Single Disk Drive 200 
Making Copies With a Dual Disk Drive 200 

193 USING CP/M MODE-Files, Disks and Disk Drives In CP/M 3.0 





What Is A File? 

Creating A File 

Naming A File 

195 

One of CP/M's most important tasks is to access and maintain files 
on your disks. Files in CP/M are fundamentally the same as in C128 
or C64 modes-that is, they are collections of information. However, 
CP/M handles files somewhat differently than do C128 and C64 
modes. This section defines the two types of files used in CP/M; tells 
how to create. name and access a file; and describes how files are 
stored on your CP/M disks. 

As noted above, a CP/M 3.0 file is a collection of information. Every 
file must have a unique name by which CP/M identifies the file. A 
directory is also stored on each disk. The directory contains a list of 
the filenames stored on thaI disk and the locations of each file on the 
disk, 

There are two kinds of CP/M files: program (command) files, and 
data files. A program file contains a series of instructions that the 
computer follows step-by-step to achieve some desired result. A 
data We is usually a collection of related information (e,g., a list of 
names and addresses, the inventory of a store, the accounting 
records of a business, the text of a document). 

There are several ways to create a CP/M file. One way is to use a text 
editor. The CP/M text editor ED is used to create and name a file. You 
can also create a file by copying an existing file to a new location; 
you can rename the Ille in the process. Under CP/M, you can use the 
PIP command to copy and rename files. Finally, some programs 
(such as MAC, a CP/M machine language program) create output 
files as they process input files. 

The ED and PIP commands are summarized in Section 14. together 
with other commonly used CP/M commands. Details on these and all 
other CP/M 3.0 commands may be found in the CP/M Plus User's 
Guide, which you can obtain by responding to the offer on the card 
inserted in this chapter. 

File Specification 

CP/M identifies every file by a unique file specification. A file speci­
fication can have four parts: a drive specifier, a filename, a file· 
type and a password. The only mandatory part is the filename. 

USING CP/M MODE-Flies, Disks and Disk Drives In CP/M 3.0 



Drive Specifier 

Filename 

Flletype 

The drive specifier is a single leller (AP) fol­
lowed by a colon Each disk drive in your system 
is assigned a Jetter. When you include a drive 
specifier as part of the file specification, you are 
telling CP/M to look for the file on the disk cur­
rently in the specified drive. For example, if you 
enter: 

B:MYFILE ItELUllli 

CP/M looks in drive B for the file MYFILE.1f you 
omit the drive specifier, CP/M 3.0 looks for the 
file in the default drive (usually A). 

A filename can be from one to eight characters 
long, such as: 

MYFILE 

A file specification can consist simply of a 
filename. When you make up a filename, try to 
let the name tell you something about what the 
file contains. For example, if you have a list of 
customer names for your business, you could 
name the fite: 

CUSTOMER 

so thaI the name gives you some idea of what is 
in the file. 

To help you identify files belonging to the same 
category, CP/M allows you to add an optional 
one- to three-character extension, called a file­
type, to the filename. When you add a fitetype to 
the filename, separate the filetype from the 
filename with a period. Try 10 use letters that tell 
something about the file's category. For exam­
ple. you could add the following filetype to the 
file that contains a list of customer names: 

CUSTOMER,NAM 

When CPIM displays file specifications, it adds 
blanks to short filenames so that you can com­
pare filetypes quickly. The program files that 
CPIM loads Into memory from a disk have the 
fitetype COM. 

196 USING CP/M MODE-Flies. Disks and Disk Drives In CP/M 3.0 



Password 

Sample File 
Specification 

U •• rNumber 

In the Commodore 128's CP/M 3,0 you can 
include a password as part of the file specifica· 
tion. The password can be from one to eight 
characters. If you include a password, separate 
it from the filetype (or filename, if no flletype is 
included) with a semicolon, as follows: 

CUSTOMER.NAM;ACCOUNT 

A password is optional. However, if a file has 
been protected with a password, you MUST 
enter the password as part of the file specifica· 
tion to access the file . 

A file specification containing all four possible 
elements consists of a drive specification, a 
primary filename, a filetype and a password, all 
separated by the appropria te characters or 
symbols as in the following example: 

A:DOCUMENT.LAW;SUSAN "B"EIU ..... B ... ".'" 

CP/M 3.0 further identifies all files by assigning each one a user 
number which ranges from 0 to 15. CP/M 3.0 assigns the user num· 
ber to a file when the file is created. User numbers allow you to sepa· 
rate your files into 16 file groups. 

The user number always precedes the drive identifier except for 
user 0, which is the default user number and is not displayed in 
the prompt. Here are some examples of user numbers and their 
meanings. 

4A) User number 4. drive A 
A ) User number 0, drive A 
2B) User number 2. drive B 

You can use the built· in command USER to change the current user 
number like this: 

A) USER 3 RUURN 
3A ) 

197 USING CPtM MODE-Files. Oisks and Disk Drives In CPtM 3.0 



You can change both the user number and the drive by entering the 
new user number and drive specifier together at the system prompt: 

A )3B: ::.RETURN 
38 ) 

Most commands can access only those files that have the current 
user number. However, if a file resides in user 0 and is marked with a 
system file attribute, the file can be accessed from any user number. 

Using Wildcard Characters to Acce •• More Than One File 

Certain CPfM 3.0 built-in and transient commands can select and 
process several files when special wildcard characters are included 
in the filename or filelype. A wildcard is a character that can be used 
in place of some other characters. CPfM 3.0 uses the asterisk (") and 
the question mark (?) as wildcards. For instance, if you use a ? as the 
third character in a filename, you are telling CPfM to let the? stand 
for any character that may be encountered in that position. Similarly, 
an '" tells CPfM to fill the filename with? question marks as indicated. 
A file specification containing wildcards is called an ambiguous files­
pec and can refer to more than one file, because it gives CPfM 3.0 a 
pattern to match. CPfM 3.0 searches the disk directory and selects 
any file whose filename or filetype matches the pattern. For exam­
ple, if you type: 

?????TAX.L/B 

then CP/M 3.0 selects all files whose filename end in TAX and whose 
fi letype is .LlB. 

Aeserved Character. 

The characters in Table 12-1 have special meaning in CP/M 3.0, so 
do not use these characters in f jle specifications except as indi­
cated. 

198 USING CP/M MODE-Flies, Disks and Disk Drives In CP/M 3.0 



Table 12·1. CP/M 3.0 Reserved Characters 

Character 

($ , ']> [] } 
tab space 
carriage return 

O&'l'­
[] 
() 

1$ 

Meaning 

file specification delimiters 

drive delimiter in file specification 

filetype delimiter in file specification 

password delimiter in file specificat ion 

comment delimiter at the beginning of a com· 
mand line 

wildcard characters in an ambiguous file specifi· 
cation. 

option list delimiters 

option list delimiters for global and local options. 

delimiters for mul t iple modifiers inside square 
brackets for options that have modifiers. 

option delimiters in a command line. 

Reserved Flletypes 

CP/M 3.0 has al ready established several file groups. Table 12·2 lists 
some of their filetypes with a short description of each. 

Filetype 

ASM 
BAS 
COM 
HEX 
HLP 
$$$ 
PRN 
REL 
SUB 
SYM 
SYS 

Table 12·2, CPIM 3.0 Reserved Flletypes 

Meaning 

Assembler source file 

BASIC source program 

zao or equivalent machine language program 
Output file from MAC (used by HEXCOM) 
HELP message file 

Temporary file 

Print file from MAC or RMAC 

Output file from RMAC (used by LINK) 
List of commands to be executed by SU BMIT 

Symbol file from MAC, RMAC or LINK 
System file 

199 USING CP/M MODE-Flies, Disks and Disk Drlve3 in CP/M 3.0 



How To Mak. 
Copl •• Of Your 
CP/M 3.0 Dloko 
And FII .. 

You can back up your CP/M 3.0 disks, using either one or two disk 
drives. The back·up disks can be new or used. You might want to 
format new disks, or reformat used disks with an appropriate CP/M 
disk formatting program. If the disks have been used previously, be 
sure that there are no other files on the disks. 

To make backups use the copysys and PIP utility programs found on 
your CP/M system disk. PIP can copy all program and data files. 
Copysys can only copy the operating system. 

Making Copi •• With a Singl. DI.k Drlv. 

You may copy the contents of a disk to another disk with a single 
Commodore disk drive (1541 or 1571). The PIP command copies the 
contents of one file to another. To check the format for PIP type: 

A> HELP PIP 

In fesponse, the computer gives the syntax for the PIP command. 
Use drive A as the source drive and drive E as the destination drive. 
Drive E is referred as a virtual drive-that is. it does not exist as an 
actual piece of hardware. During the copying process, you will be 
prompted to remove the source disk and replace it with the destina· 
tion (new) disk. 

Making Copies With A Dual DI.k Drive 

This section shows how to make distribution disk back·ups on a sys· 
tem that has two drives: drive A and drive B. Your drives might be 
named with other letters from the range A through P. To make a copy 
of your CPIM 3.0 distribution system disk, first use the COPYSYS 
utility to copy the operating system loader. Make sure that your dis· 
tribution system disk is in drive A, the default drive, and the blank 
disk is in drive 8. Then enter the following command at the system 
prompt : 

A>COPYSYS 

200 USING CP/M MODE-Flies, Disks and Disk Drives in CP/M 3.0 



CPIM 3 loads COPYSYS into memory and runs il. COPYSYS displays 
the following output on your screen. When the program prompts you, 
press RETURN only when you have verified thallhe correct disk is in 
the correct drive. 

COPYSYS VER 3.0 

SOURCE DRIVE NAME (OR RETURN FOR DEFAULn ?A 

SOURCE ON A THEN TYPE RETURN 

FUNCTION COMPLETE 

DESTINATION DRIVE NAME (OR RETURN TO REBOOn ?B 

DESTINATION ON B THEN TYPE RETURN 

FUNCTION COMPLETE 

DO YOU WISH TO COPY CPM.SYS? YES 

(CPIM 3.0 REPEATS THE ABOVE PROMPTS TO COPY CPM.SYS.) 

A) 

You now have a copy of the operating system only. To copy the 
remaining files from the system disk. enter the following PIP 
command: 

A )PIP B: = A:*.* 

This PIP command copies all the fites in you disk directory to drive B 
from drive A. PIP displays the message COPYING followed by each 
filename as the copy operation proceeds. When PIP finishes copy­
ing, CP/M 3 displays the system prompt. 

Now you have an exact copy of the system disk in drive B. Remove 
the original system disk from drive A and store it in a safe place. As 
long as you retain the original in an unchanged condition, you will be 
able to restore your CP/M program files if something happens to your 
working copy. 

201 USING CP/M MODE-F iles, Disks and Disk Drives In CP/M 3.0 





SECTION 13 
Using the Console 
and Printer in 
CP/M 3.0 

CONTROLLING CONSOLE OUTPUT 

CONTROLLING PRINTER OUTPUT 

205 

205 

CONSOLE LINE EDITING 205 

USING CONTROL CHARACTERS FOR LINE EDITING 206 

203 USING CP/M MODE-Using lhe: Console and Printer In CPfM 3.0 





Controlling 
Console Output 

Controlling 
Printer Output 

Console Line 
Editing 

205 

This section describes how CP/M 3,0 communicates with your con­
sole and printer. It tells how to start and slop console and printer 
output. and edit commands you enter at your console. 

Sometimes CP/M 3.0 displays information on your screen too quickly 
for you to read it. To ask the system to wait while you read the display, 
hold down the CONTROL (CTRL) key and press S. A CTRL·S key· 
stroke sequence causes the display to pause. When you are ready, 
press CTRL·O to resume the display. Pressing the NO SCROLL key 
will also pause the system and place a pause window on the status 
line at the bottom of the screen (line 25). To resume the display, press 
NO SCROLL again. II you press any key besides CTRL·O or NO 
SCROLL during a display pause, CPfM 3.0 sounds the console bell. 

Some CP/M 3.0 utilities (like DIR and TYPE) support aulomatic pag· 
ing at the console. This means that if the program's output is longer 
than the screen can display at one time, the display automatically 
halts when the screen is filled. When this occurs, CPfM 3.0 prompts 
you to press RETURN to continue. This option can be turned on or 
off using the SETDEF command. 

You can also use a control command to echo (that is. display) con· 
sale output to the printer. To start printer echo, press CTRL-P A beep 
occurs to tell you that echo is on. To stop. press CTRL-P again. (There 
is no beep at this point.) While printer echo is in effect, any charac­
ters that appear on your screen are listed at your printer. 

You can use printer echo with a DIR command to make a list of files 
stored on a floppy disk. You can also use CTRL-P with CTRL-S and 
CTRL-Q to make a hard copy of part of a file. Use a TYPE command 
to start a display of the file at the console. When the display reaches 
Ihe part you need to print, press CTRL·S to stop the display, CTRL·P 
to enable printer echo, and then CTRL-Q to resume the display and 
start printing. You can use another CTRL-S, CTRL-P, CTRL·Q 
sequence to terminate printer echo. 

As noted previously, you can correct simple typing errors by uSing 
the INST DEL key or CTRL-H. CP/M 3.0 also supports additional line· 
editing functions thai you perform with control characters. You can 
use the control characters to edit command lines or input lines to 
most programs. 

USING CP/M MODE-Using the Console and Prin ter in CP/M 3_0 



Using Control 
Characters for 
Line Editing 

By using the line-editing control characters listed in Table 13-1, you 
can move the cursor left and fight to inseft and delete characters in 
the middle of a command line_ In this way you do not have to retype 
everything to the right of your correction. 

In the following sample example, the Usef mistypes PIp, and CP/M 
3.0 returns an error message. The user recalls the erroneous com, 
mand line by pressing CTRL-W and corrects the error (the underbar 
character represents the cursor): 

A) POP A: = B:"." _ (PIP m .. typed) 
POP? 

A ) POPA: = B:· ,·_ 

A ) POPA: = B:· ,· -
(CTRL-W recalls the line) 
(CTRL-S moves cursor to beginning of line) 
(CTRL·F moves cursor to right) A)POP A: = B:"." -A ) PP A: = B:·,· - (CTRL·G deletes error) 

A)Plf A: = B:"." (type I corrects the command name) 

After the command line is corrected, the user can press RETURN 
even though the cursor is in the middle of the line. A RETURN key· 
stroke. (or one of the equivalent control characters) not only exe, 
cutes the command, but also stores the command in a buffer so that 
you can recall it for editing or reexecution by pressing CTRL-W. 

When you insert a character in the middle of a line, characters to the 
right of the cursor move to the right. If the line becomes longer than 
your screen is wide, characters disapper off the right side of the 
screen. These characters are not lost. They reappear if you delete 
characters from the line or if you pressCTRL·E when the cursor is in 
the middle of the line. CTRL-E moves all characters to the right of the 
cursor to the next line on the screen. 

Table 13·' gives a complete list of line·editing control characters for 
the CP/M 3.0 system on the Commodore 128. 

Table 13·1. CP/M 3,0 Line-editing Control Characters 

Character 

CTRL·A 
CTRL·8 

Meaning 

Moves the cursor one character to the left. 
Moves the cursor to the beginning of the com, 
mand line without having any effect on the can, 
lents of the line. If the cursor is al the beginning, 
CTRL-B moves ilia Ihe end ollhe line. 

206 USING CPfM MODE-Using the Console and Printer In CPIM 3.0 



-

-

Table 13·1. CP/M 3.0 Line·editing Control Characters 
(Continued) 

Character 

CTRL·E 

CTRL·F 
CTRL·G 

CTRL·H 

CTRL·I 

CTRL-J 

CTRL·K 
CTRL·M 

CTRL·R 

CTRL·U 

CTRL·W 

Meaning 

Forces a physical carriage return but does not 
send the command line to CPIM 3.0. Moves the 
cursor to the beginning of the next line without 
erasing the previous input. 

Moves the cursor one character to the right. 

Deletes the character under by the cursor. The 
cursor does not move. Characters to the right of 
the cursor shift lef t one place. 

Deletes the character to the left of the cursor 
and moves the cursor left one character posi­
tion. Characters to the right of the cursor shift 
left one place, 

Moves the cursor to the next lab stop. Tab stops 
are automatically set at each eighth column. 
Has the same effect as pressing the TAB key. 
Sends the command line to CPIM 3.0 and 
returns the cursor to the beginning of a new line, 
Has the same effect as a RETURN or a CTRL-M 
keystroke. 

Deletes to the end of the line from the cursor. 

Sends the command line to CP/M 3.0 and 
returns the cursor to the beginning of a new line. 
Has the same effecl as a RETURN or a CTRL·J 
keystroke, 

Retypes the command line. Places a # charac­
ter at the current cursor location, moves the 
cursor to the next line, and retypes any partial 
command you typed so far. 

Discards ali the characters in the command line, 
places a If. character at the current cursor posi­
tion, and moves the cursor to the next line. How­
ever, you can use a CTRL-W to recall any char­
acters that were to the left of the cursor when 
you pressed CTRL-U. 

Recalls and displays previously entered com­
mand line both at the operating system level and 
within executing programs, if the CTRL-W is the 
firsl characler entered afler Ihe prompt. CTRL·J. 
CTRL·M. CTRL·U and RETURN define the com· 

207 USING CP/M MODE-Using the Console and Printer in CP/M 3.0 



Table 13·1. CP/M 3.0 Line·editing Control Characters 
(Continued) 

Character 

CTAL·X 

Meaning 

mand line you can recall. If the command line 
contains characters, CTRL-W moves the cursor 
to the end of the command line. If you press 
RETURN, CP/M 3.0 executes the recalled 
command. 
Discards all the characters left of the cursor and 
moves the cursor to the beginning of the current 
line. CTRL-X saves any characters right of the 
cursor. 

208 USING CP/M MODE-USing the Console and Printer In CP/M 3.0 

-



~ 

SECTION 14 THE TWO TYPES OF CP/M 3.0 COMMANDS 211 
Summary Of 
Major CP/M 3.0 BUILT·IN COMMANDS 211 
Commands 

TRANSIENT UTILITY COMMANDS 212 

REDIRECTING INPUT AND OUTPUT 214 

ASSIGNING LOGICAL DEVICES 214 

FINDING PROGRAM FILES 215 

EXECUTING MULTIPLE COMMANDS 215 

TERMINATING PROGRAMS 216 

GETTING HELP 216 

209 USING CP/M MODE-$ummaryof MajorCP/M 3.0 Commands 





-

The Two Type. of 
CP/M 3.0 
Commands 

Bullt·ln 
Command. 

As noted in Section 11, a CPfM 3.0 command line consists of a com· 
mand keyword, an optional command tail. and a RETURN keystroke. 
This section describes the two kinds of commands the command 
keyword can identify, and summarizes individual commands and 
their functions. The section also gives examples of some commonly 
used commands. In addition, the section explains the concept of 
logical and physical devices under CP/M 3.0. This section then lells 
how CP/M 3.0 searches for a program file on a disk. tells how to exe­
cute multiple commands, and how to reset the disk system. Finally, 
the section explains how to use the HELP command to get informa­
tion on various CP/M topics including command formats and usage, 
right at the keyboard. 

There are two types of commands in CP/M 3.0: 

• Built-in commands-which identify programs in memory 
• Transient utility commands-which identify program files 

on a disk 

CP/M 3.0 has six built-in commands and over 20 transient utility com· 
mands. You can add utilities to your system by purchasing various 
CP/M 3.0-compatible application programs. If you are an experi­
enced programmer, you can also write your own utilities that operate 
with CPIM 3.0. 

Built-in commands are parts of CP/M 3.0 that are always available 
for your use, regardless of which disk you have in which drive. Built· 
in commands are entered in the computer's memory when CP/M 3.0 
is loaded, and therefore execute more quickly than the transient 
utilities. Table 14'1 , on the next page. lists the Commodore 128 CP/M 
3.0 built·in commands. 

Some built·in commands have options that require support from a 
related transient utility. The related transient utiltiy command has the 
same name as the built·in command and has a filetype of COM. 

21 1 USING CP/M MODE-Summary 01 Major CP/M 3.0 Commands 



Transient Utility 
Commands 

212 

Command 

DIR 

DIRSYS 

ERASE 

RENAME 
TYPE 

USER 

Table 14·1 . Built·in Commands 

Function 

Displays filenames of all files in the directory 
except those marked with the SYS attribute. 
Displays filenames of files marked with the SYS 
(system) attr ibute in the directory. 
Erases a filename from the disk directory and 
releases the storage space occupied by the file. 
Renames a disk file. 
Displays contents of an ASCII (TEXT) file at your 
screen. 
Changes to a different user number. 

The CP/M 3.0 transient utility commands are listed in Table 14-2. 
When you enter a command keyword that identifies a transient utility, 
CP/M 3.0 loads the program file from the disk and passes that file 
any filenames, data or parameters you entered in the command tail. 

USING CP/M MODE-summary 01 MajOr CPfM 3.0 Commands 



Name 

COPYSYS 
DATE 
DEVICE 

DIR 

DUMP 
ED 
ERASE 
GET 

HE LP 

INITDIR 

PIP 
PUT 

RENAME 

SET 

SETDEF 

SHOW 
SUBMIT 

TYPE 

Table 14·2. Transient Utility Commands 

Function 

Creates a new boot disk. 

Sets or displays the date and t ime. 

Assigns logical CP/M devices to one or more 
physical devices, changes device driver proto­
col and baud rates, or sets console screen size. 

Displays directory with files and their character­
istics. 
Displays a file in ASCII and hexadecimal format. 

Creates and alters ASCII files . 

Used for wildcard erase. 

Temporarily gets console input from a disk fi le 
rather than the keyboard. 

Displays information on how to use CP/M 3.0 
commands. 
Initializes a disk directory to aUow time and date 
stamping. 

Copies f iles and combines files. 

Temporarily directs printer or console output to 
a disk file . 

Changes the name of a file, or a group of fi les 
using wildcard characters. 

Sets f ile options including disk labels, file attri­
butes, type of time and date stamping and 
password protect ion. 

Sets system options including the drive search 
chain . 

Displays disk and drive statistics. 

Automatically executes mul t iple commands. 

Display contents of text file (or group of files. if 
wildcard characters are used) on screen (and 
printer if desired). 

213 USING CP/M MODE-Summary 01 Major CPIM 3.0Commands 



Redirecting Input 
and Output 

Assigning Logical 
Devlc • • 

214 

CP/M 3.0's PUT command allows you to direct console or printer 
output to a disk file. You can use a GET command to make CP/M 3.0 
or a utility program take console input from a disk file. The following 
examples illustrate some of the capabilities offered by GET and PUT 

You can use a PUT command to direct console output to a disk file 
as well as to the console. With PUT, you can create a disk lile can· 
taining a directory of all files on that disk, as shown in Figure 14·1 . 

A)Pur CONSOI.E ourpUII0 fiLE DIR PRN 
PUTTING CONSOlE OUTPUT TO FILE DIR PRN 

A>DIR 
A FILENAME TEX "ON, m FRON, 8AK ONE BAK THREE '" A FOUR '" ONE '" LlNEDIT '" EXAMPl nrr 1WO SA' 
A owe '" THREE 8AK EXAMP2 nrr 

A) TYPE DIR PRN 
A FILENAME TEX FRONT TEX FRONT 'A< ONE SA' THREE TEX 
A FOUR TEX 0"' TEX LlNEDIT TEX EXAMPl nrr 1WO OAK 
A TWO TEX THREE SA' EXAM P2 TXT 

Figure 14·1. PUT Command Example 

A GET command can direct CP/M 3.0 or a program to read console 
input from a disk file instead of from the keyboard. If the file is to be 
read by CP/M 3.0. it must contain standard CP/M 3.0 command lines. 
If the file is to be read by a utility program. it must contain input 
appropriate for that program. A file can contain both CP/M 3.0 com· 
mand lines and program input if it also includes a command to start 
a program. 

The minimal Commodore 128 CP/M 3.0 hardware includes a console 
consisting of a keyboard and screen display. and a 1571 disk drive. 
You may want to add another device to your system, such as a 
printer or a modem. To help keep track of these physically different 
input and output devices, Table 14·3 gives the names of CP/M 3.0 
logical devices. It also shows the physical devices assigned to these 
logical devices in the Commodore 128 CP/M 3.0 system. 

USING CP/M MODE-Summary of Major CP/M 3.0 Commands 



Finding Program 
Flies 

Executing 
Multiple 
Commands 

215 

Table 14·3. CPIM 3.0 Logical Devices 

Logical Physical Device 
Device Name Device Type Assignment 

CONIN: Console input Keyboard 
CONOUT: Console output eO-column Screen 
AUXIN: Auxiliary input Null 
AUXOUT: Auxiliary output Null 
LST: list oulput PTAl or PTA2 

You can change these assignments with a DEVICE command. For 
example, you can, assign AUXIN and AUXOUT 10 a modem so that 
your computer can use telephone lines to communicate with other 
computer users, with information services like CompuServe, and 
with computerized bulletin boards. 

If a command keyword identifies a utility, CP/M 3.0 looks for that 
program file on the default or specified drive. It looks under the cur­
rent user number, and then under user a for the same file marked 
with the SYS attribute. At any point in the search process. CP/M 3.0 
stops the search if it finds the program file. CPIM 3.0 then loads the 
program into memory and executes it. When the program termi­
nates, CP/M 3.0 displays the system prompt and waits for your next 
command. However, if CP/M 3.0 does not find the command file. it 
repeats the command line followed by a question mark. and waits for 
your next command. 

In the examples so far, CP/M 3.0 has executed only one command at 
a time. CP/M 3.0 can also execute a sequence of commands. You 
can enter a sequence of commands at the system prompt, or you 
can put a frequently needed sequence of commands in a disk file , 
using a filetype of SUB. Once you have stored the sequence in a disk 
file, you can execute the sequence whenever you need to with a 
SUBMIT command. 

USING CP/M MODE-Summary 01 MajOr CP/M 3.0 Commands 



Terminating 
Programs 

Getting Help 

You can use the two keystroke command CTRL-C to terminate pro­
gram execution or reset the disk system_ To enter a CTRL-C com­
mand, hold down the CTRL key and press C. 

Most application programs that run under CP/M and most CP/M tran­
sient utilities can be terminated by a CTRL·C. However, if you try to 
terminate a program while it is sending a display to the screen, you 
may need to press a CTRL-S to halt the display before you enter 
CTRL-C_ 

CP/M 3.0 includes a transient utility command called HELP that will 
display a summary of the format and use for the most common CP/M 
commands. To access HELP, simply enter the command: 

A ) HELP 

You can press the HELP key instead of typing the word HELP and 
pressing the RETURN key. 

The list of available topics is then displayed, like this: 

Topics available: 

COMMANDS CNTRLCHARS COPYSYS DATE DEVICE OIR 
DUMP ED ERASE FILESPEC GENCOM GET 
HELP HEXCOM INITD1R LIB LINK MAC 
PATCH PtP (COPy) PUT RENAME RMAC SAVE 
SET SETOEF SHOW SID SUBMIT TYPE 
USER XREF 

Suppose you type: 

HELP) PIP 

216 USING CP/M MODE-Summary of Major CPfM 3.0 Commands 



CP/M then displays the following information: 

PIP (COPy) 

Syntu: 

DESTINATION SOURCE 

PIP d: {Gn }~ilespec {[Gn[} = filespec {[o[} , . . ,<1: {[o[} 

Explanation: 

The file copy program PIP copies files, combines files, 
and transfers files between disks, printers, consoles, or 
other devices attached to your computer. The first 
filespec is the destination. The second filespec is the 
source. Use two or more source filespecs separated by 
commas to combine two or more files into one file. (0) is 
any combination of the available options. The [Gn) option 
in the destination filespec tells PIP to copy your file to 
that user number. 

PIP with no command tail displays an • prompt and 
awaits your series of commands, entered and processed 
one line at a time. The source or destination can be any 
CP/M 3.0 logical device. 

The HELP facility provides information like this on all the CP/M 3.0 
built·in and transient utility commands. If you want information on a 
specific area, you can type HELP subject after the system prompt, 
where subject is a command tail describing the subject you are inter· 
ested in. For example: 

A) HELP PIP 
A I) HELP DIRSYS 

You can refer to HELP any time you need information on a specif ic 
command. Or you can just browse through HELP to broaden your 
knowledge of CPIM 3.0. 

217 USING CP/M MODE-Summary of MajOr CP/M 3.0 Commands 





SECTION 15 
Commodore 
Enhancements To 
CP/M 3.0 

KEYBOARD ENHANCEMENTS 
Defining a Key 
Defining a String 
Using ALT Mode 

SCREEN ENHANCEMENTS 

219 USING CPIM MODE-Commodore Enhancemenls 10 CP/M 3.0 

221 
222 
222 
223 

223 





Keyboard 
Enhancements 

Commodore has added a number of enhancements to CP/M 3.0. 
These enhancements tailor the capabilities of the Commodore 128 
to those of CP/M 3.0. This section describes these enhancements. 

Any key on the keyboard can be defined to generate a code or func­
tion, except the following keys: 

Left SHIFT key 
Right SHIFT key 
Commodore key 
CONTROL key 
RESTORE key 
40-80 key 
CAPS LOCK key 

In defining a key, the keyboard recognizes the following special func­
tions. To indicate these functions, hold down the CONTROL key and 
the right SHIFT key, and press the desired function key simultane­
ously. 

Key 
CURSOR LEFT key 
CURSOR RIGHTkey 

ALTkey 

Function 
Defines key 
Defines string (points to function 
keys) 
Toggles key filter 

221 USING CPfM MODE-Commodore Enhancements toCPIM 3.0 



, 

222 

Defining A Key 

A user can define the code that a key can produce. Each key has 
four possible definitions: Normal, Alpha Shifl , Shift and Control. The 
Alpha Shifl is toggled onloff by pressing the Commodore key. After 
entering this mode, a small box will appear on the bottom of the 
screen. The first key that is pressed is the key to be defined. The 
current HEX (hexadecimal) value assigned to this key is displayed: 
the user can then type the new HEX code for the key, or abort by 
typing a non-HEX key_ The following is a definition of the codes that 
can be assigned to a key. (In ALT mode, codes are returned to the 
application; see ALT Mode below.) 

Code 
DOh 
01h 10 7Fh 
SOh 10 9Fh 
AOh 10 AFh 
BOh 10 BFh 
COhloCFh 
DOh 10 DFh 
EOh 10 EFh 
FOh 
F1h 
F2h 
F3h 
F4h 
F5h 10 FFh 

Defining A String 

Function 
Null (same as not pressing a key) 
Normal ASCII codes 
Siring assigned 
80-column character color 
SO-column background color 
40-column character color 
40·column background color 
40·column border color 
Toggle disk slalus onloff 
System Pause 
(Undefined) 
4Q-column screen window right 
4O-column screen window left 
(Undefined) 

This function allows the user to assign more than one key code to a 
single key. Any key that is typed in this mode is placed in the string. 
The user can see the results of typing in a long box at the bottom 01 
the screen. 

NOTE: Some keys may not display what they are. To provide the user 
with control over the process of entering data. the following five spe­
cial key functions, are available. To access these functions. press 
the CONTROL and right SHIFT keys and the desired function keys. 

Key Function 
RETURN 
+ (on main keyboard) 
- (on main keyboard) 
Left arrow 
Right arrow 

Complete string definition 
Insert space into string 
Delete cursor character 
Cursor left 
Cursor right 

USING CP/M MODE-Commodore Enhancements 10 CP/M 3.0 



Screen 
Enhancements 

Using ALT Mode 

ALT mode is a toggle function (that is. it can be switched between 
ON and OFF) The default value is OFF This function allows the user 
to send a·bit codes to an application. 

, . 
The default screen in CP/M 3.0 emulates an ADM31 terminal. The 
following screen functions emulate ADM 3A operation, which is a 
subset of ADM31 operation. 

CTRL G Sound bell 
CTRL H Cursor left 
CTRLJ Cursor down 
CTRL K Cursor up 
CTRL L Cursor right 
CTRL M Move cursor to start of current line (CR) 
CTRL Z Home cursor and clear screen 
ESC = RC Cursor position where R is the row location (with 

values from space to 8) and C is the column loca· 
tion (next values from space to 0), referenced to 
the status line 

Additional functions in ADM31 mode include: 

ESCT I 
ESCt 
ESCYI 
ESCy 
ESC : I 
ESC' 

ESCO 
ESCW 
ESCE 
ESCR 

Clear to end of line 

Clear to end of screen 

Home cursor and clear screen (including the 
status line) 

Insert character 
Delete character 
Insert line 
Delete line 

• ESC ESC ESC colon' sets a screen color from a table of 16 
color entries. (These are the same color values listed in Chapter 
II. Section 6. Figure 6-2.) The color # will be set as follows: 

20h to 2Fh character color 
30h to 3Fh background color 
40h to 4Fh border color (40 column only) 

223 USING CP/M MODE-Commodore Enhancements to CP/M 3.0 



The visual effects associated with following functions are visible only 
with the BO-column screen format. 

ESC) 
ESC ( 
ESCG4 

• ESCG3 
ESCG2 

• ESCG1 
ESC GO 

Half intensity 
Full intensity 
Reverse video ON 
Turn underline ON 
Blink ON 
Select the alternate character set 
All ESC G attributes OFF 

*NOTE: This is NOT a normal ADM31 sequence. 

• 

The sections in this chapter provide a summary of the structure and 
wide-ranging capabilities of CP/M 3.0 For detailed information on any 
facet of CPIM 3.0, you should respond to the offer described on the 
card included in this chapter. In return you will receive a copy of the 
Digital Research, Inc. book, CPIM Plus User's Guide, 

224 USING CP/M MODE-Commodore Enhancements to CP/M 3.0 



CHAPTER 

~ BASIC 7.0 ENCYCLOPEDIA 
-

-



.' 



SECTION 16 
Introduction 

ORGANIZATION OF ENCYCLOPEDIA 

COMMAND AND STATEMENT FORMAT 

227 BASIC 1.0 EN CYCLOPEDIA-Introduction 

229 

229 





Organization of 
Encyclopedia 

Command and 
Statement Format 

•• 

This chapter lists BASIC 7.0 language elements. It gives a complete 
list of the rules (syntax) of Commodore 128 BASIC 7.0, along with a 
concise descript ion of each. 

BASIC 7.0 includes all the elements of BASIC 2.0. The new com­
mands, statements, functions and operators provided in BASIC 7.0 
are highlighted in color. 

The different types of BASIC operations are listed in individual sec­
tions, as follows: 

1. COMMANDS and STATEMENTS: the commands used to 
edit , store and erase programs; and the BASIC program 
statements used in the numbered lines of a program. 

2. FUNCTIONS: the string, numeric and print functions. 

3. VARIABLES AND OPERATORS: the different types 01 vari· 
ables, legal variable names, ar ithmetic operators and logica l 
operators. 

4. RESERVED WORDS AN D SYMBOLS: the words and sym· 
boIs reserved for use by the BASIC 7.0 language, which can­
not be used for any other purpose. 

The command and statement definit ions in this encyclopedia are 
arranged in the following format: 

Command name-

Buer de/,mrlOfl-

Command lormal-

D,scusslOn 01 
10lmaranduse -

Example/S) -

AUTO 

-Enable/disable automatic line numbenng 

AUTO (linell 

ThiS command turns on the automatic line·numbenng tea· 
ture. ThiS eases the Job ot enter ing programs. by automatl· 
cally typrng the line numbers lor the user As each program 
Irne is entered by presSing RETURN. the next line number IS 
prrnted on the screen. and the cursor IS positioned two 
spaces to the nght 01 the line number The line number 
argument relers to the desired rncrement between hne 
numbers. AUTO Without an argument turns ol f the aulo Irne 
numberrng. as does RUN This statement can be used only 
in dnect mode (outside of a program) 

EXAMPLES: 

AUTO 10 Automatically numbers program lines In 

rncrements of 10 

AUTO 50 Automatically numbers hnes In mcremems ot 50 

AUTO Turns Oil ilUlomallC Ime numberong 

229 BASIC 7.0 ENCYCLOPEDIA-Introduction 



The boldface hne thai delines Ihe lormat consists 01 Ihe lollowing elements: 

DLOAD "program name" IDO, US] 

keyword argument additional arguments 
(possibly opl lonal) 

The parts 01 the command or statement that must be typed exactly 
as shown are in capital letters. Words the user supplies, such as the 
name of a program, are not capitalized. 

When Quote marks (" ") appear (usually around a program name or 
filename). the user should include them in the appropriate place. 
according to the format example. 

KEYWORDS, also called reserved words, appear in upper-case 
letters. Keywords may be typed using the full word or the approved 
abbreviation. (A full list of abbreviations is given in Appendix K). The 
keyword or abbreviation must be entered correctly or an error will 
result. The BASIC and DOS error messages are defined in Appendi· 
ces A and B, respectively. 

Keywords are words that are part of the BASIC language. They are 
the central part of a command or statement, and they tell the com­
puter what kind of action to take. These words cannot be used as 
variable names. A complete list of reserved words and symbols is 
given in Section 20. 

ARGUMENTS. also called parameters, appear in lower·case letters. 
Arguments complement keywords by providing specific information 
to the command or statement. For example, the keyword load tells 
the computer to load a program while the argument tells the com­
puter which specific program to load. A second argument specifies 
from which drive to load the program. Arguments include filenames, 
variables, line numbers, etc. 

SQUARE BRACKETS II show'optional arguments. The user selects 
any or none of the arguments listed, depending on requi rements. 

ANGLE BRACKETS (> indicate the user MUST choose one of the 
arguments listed. 

230 BASIC 7.0 ENCVCLOPEDIA- Introduction 



A VERTICAL BAR I separates items in a list of arguments when the 
choices are limited to those arguments listed. When the vertical bar 
appears in a list enclosed in SQUARE BRACKETS, the choices are 
limited to the items in the list, but the user still has the option not to 
use any arguments. 

ELLIPSIS ... a sequence of three dots means an option or argu­
ment can be repeated more than once. 

QUOTATION MARKS " .. enclose character strings, filenames and 
other expressions. When arguments are enclosed in quotation 
marks, the quotation marks must be included in the command or 
statement. Quotation marks are not conventions used to describe 
formats; they are required parts of a command or statement. 

PARENTHESES () When arguments are enclosed in parentheses, 
they must be included in the command or statement. Parentheses 
are not conventions used to describe formats; they are required 
parts of a command or statement. 

VARIABLE refers to any valid BASIC variable names, such as X, A$, 
T%. etc. 

EXPRESSION refers to any valid BASIC expressions, such as 
A+ B + 2, .S·(X + 3), etc. 

231 BASIC 7.0 ENCYCLOPEDIA-IntroductIon 





SECTION 17 
Basic Commands 
and Statements 

. , 

233 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



-_. 



APPEND 

AUTD 

APPEND Hloglcal file number,"fllename"[,Ddrlve number] 
[ ( ON , ) Udevlce) 

This command opens the file having the specified filename, and 
positions the pOinter at the end of the file. Subsequent PRINT# 
(wri1e) statements will cause data to be appended to the end of this 
logical file number. Default values for drive number and device num­
ber are a and 8 respectively. 

Variables or expressions used as filenames must be enclosed wi thin 
parentheses. 

EXAMPLES: Append # 8, "MYFILE" OPEN logical file 8 
called "MYFILE" for 
appending with 
subsequent PRI NTH 
statements. 

Append # 7, (AS),DO,U9 

-Enable/disable automatic line numbering 

AUTO [lIn.#) 

OPEN logical file 
named by the 
variable in A$ on 
drive 0, device 
number 9, and 
prepare to APPEND. 

This command turns on the automatic line-numbering feature. This 
eases the job of entering programs, by automatically typing the line 
numbers for the user. As each program line is entered by pressing 
RETURN. the next line number is printed on the screen, and the cur­
sor is positioned two spaces to the right of the line number. The tine 
number argument refers to the desired increment between line num­
bers. AUTO without an argument turns off the auto line numbering, 
as does RUN. This statement can be used only in direct mode (out­
side of a program). 

235 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and SlalemenlS 



BACKUP 

BANK 

EXAMPLES: 

AUTO 10 Automatically numbers program lines in increments of 10. 

AUTO 50 Automatically numbers lines in increments of 50. 

AUTO Turns off automatic line numbering. 

-Copy the entire contents from one disk to another on a dual disk 
drive 

BACKUP source Ddrlve number TO d •• tlnatlon Ddrlve 
number [( ON , )Udevlce] 

This command copies all the files from the source diskette onto the 
destination diskette, using a dual disk drive. With the BACKUP com­
mand, a new diskette can be used without first formatting it. This is 
because the BACKUP command copies all the information on the 
diskette, including the format. Because of this, the BACKUP com­
mand destroys any information already on the destination disk. 
Therefore. when backing up onto a previously used diskette, make 
sure it contains no programs you mean to keep. As a precaution the 
computer asks "ARE YOU SURE?" before it starts the operation. 
Press the "Y" key to perform the BACKU~ or any other key to stop it. 
You should always create a backup of aU your disks, in case the origi­
nal diskelle is lost or damaged. Also see the COPY command. The 
default device number is unit 8. 

NOTE: This command can be used only with a dual·disk drive. 

EXAMPLES: 

BACKUP DO to 01 Copies all files from the disk in drive 
a to the disk in drive 1. in dual disk 
drive unit 8 . 

BACKUP DO TO 01 ON U9 Copies all files from drive a to drive 
1. in disk drive unit 9 . 

-Select one of the 16 banks, numbered 0-15 

BANK bank number 

This statement specifies the bank number and corresponding memo 
ory configuration for the Commodore 128 memory. The default bank 
is 15. Here is a table of available BANK configurations in the Commo­
dore 128 memory: 

236 BASIC T.O ENCYCLOPEDIA-Basic CommOlnds Md Statements 



BEGIN/BEND 

BANK 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

RAM(O) only 
RAM(I ) only 
RAM(2) only 
RAM(3) only 

CONFIGURATION 

Internal ROM , RAM(O), I/O 
Internal ROM , RAM(I), I/O 
Internal ROM , RAM(2), 110 
Internal ROM. RAM(3), 110 
External ROM , AAM(O), 110 
External ROM , RAM(I), I/O 
External ROM , RAM(2), I/O 
External ROM , RAM(3), I/O 
Kernal and Internal ROM (LOW), RAM(O), I/O 
Kernal and External ROM (l OW). RAM(O), lID 
Kernal and BASIC ROM, RAM(O), Character ROM 
Kernal and BASIC ROM, RAM(O), I/O 

To look at a particular bank (in the machine language monitor, for 
example), type BANK n (n = 0-15) and enter the moni tor. From within 
the monitor, precede the four·digit hexidecimal number of the 
address range you are viewing with a hexadecimal digit (O-F). 

This procedure is described in detail in the Commodore 128 Pro­
grammer's Reference Guide. 

A conditional statement like IF ... THEN: ELSE structured so thaI you 
can include several program lines between the start (BEGIN) and 
end (BEND) of the structure. Here's the format: 

IF Condition THEN BEGIN: statement 

statement 
statement BEND: ELSE BEGIN 
statement 
statement BEND 

237 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



BLOAD 

For EXAM PLE: 

10 IF X=1 THEN BEGIN: PRINT " X=1Is True" 
20 PRINT "So this part of the statement is performed" 
30 PRINT " When X equals 1" 
40 BEND: PRINT " End 01 BEGIN/BEND structure":GO to 60 
50 PRINT " X does not equaI1 " :PRINT " The statements 
between BEGIN/BEND are skipped" 
60 PRINT " Rest of Program" 

If the conditional (IF..THEN) statement in line lOis true. the state· 
ments between the keywords BEGIN and BEND are performed. 
including all the statements on the same line as BEND. If the 
(IF ... THEN) conditional statement in line 10 is FALSE, all statements 
between the BEGIN and BEND, including the ones on the same pro­
gram line as BEND are skipped, and the program resumes with the 
first program line immediately following the line containing BEND. 
The BEGIN/BEND essentially treats lines 10 through 40 as one long 
line. 

The same rules are true if the ELSE:BEGIN clause is specified. If the 
condition is true, all statements between ELSE:BEGIN and BEND 
are performed, including all statements on the same line as BEND. If 
false, the program resumes with the line immediately following the 
line containing BEND. 

-Load a binary file starting at the specified memory location 

BLOAD "'ilename"[,Ddrlve numberl,Udevlce number] 
[,Bbank numberl,Pstart address] 

where: 

• filename is the name of your file 
• bank number lets you select one of the 16 banks 
• start address is the memory location where loading 
begins 

A binary file is a file, whether a program or data, that has been 
SAVEd either within Ihe machine language monilor or by the BSAVE 
command. The BLOAD command loads the binary file into the loca· 
tion specified by the start address. 

EXAMPLES: 

BlOAO "SPRITES", 80, P3584 LOADS the binary file 
"SPRITES" starting in 
location 3584 (in BANK 0). 

238 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



BOOT 

BOX 

-

BLOAD " DATA1 ", DO, U8, 81 , P4096 LOADS the binary file 
" DATA 1" Into location 4096 
(BANK 1) from Drive 0, 
unit 8. 

-Load and execute a program which was saved as a binary file 

BOOT "filename" [,Ddrlve numberl(ON , ) Udevlce] 

The command loads an executable binary file and begins execution 
at the predefined starting address. The default device number is 8 
(drive 0), 

EXAMPLE: 

BOOT 

BOOT " GRAPHICS 1", 
DI, U9 

BOOT an executable program (CP/M 
Plus for example). 

" GRAPHICS 1 ", 00, U9 BOOTS Ihe • 
program "GRAPHICS 1" from unit 9, 
drive 0, and executes it. 

- Draw box at specified pOSItion on screen 

BOX [color source], X 1, Y1 [,X2, Y2][,angle][,palntU 

where: 

color source .......... . 0 = Background color 
1 = Foreground color 
2 = Multicolor 1 
3 = Multicolor 2 

x1 , y1 .....• •• •• . ...... Top left corner coordinate (scaled) 

x2, y2 ...... • •......... Bottom right corner opposi te xl. yl. 
(scaled); defaul t IS the PC location. 

angle ......•• .. ...... • Rotatlon In clockwise degrees: 
defaul t IS 0 degrees 

paint .....•• . ........ ,Paint shape with color 
a = Do not pamt 
1 = Paint 
(delaull = 0) 

This slalement allows the user to draw a rec tangle of any size on the 
screen. Rotation is based on the center of the rectangle. The pixel 
cursor (PC) is located at x2 , y2 after the BOX statement is executed. 
The color source number must be a zero (0) or one (t) if in standard 

239 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statemen ts 



BSAVE 

bit map, or a 2 or 3 if in multicolor bit map mode. Also see the 
GRAPHIC command for selecting the appropriate graphic mode to 
be used with the BOX color source number. 

The x and y values can place the pixel cursor at absolute coordi­
nates such as (100,100) or at coordinates relative to previous posi· 
tion (+ 1- x and + 1- y) of the pixel cursor such as (+ 20, - 10). The 
coordinate of one axis (x or y) can be relative and the other can be 
absolute. Here are the possible combinations of ways to specify the 
x and y coordinates: 

X,Y absolute x, absolute y 
+ I-x,y relative x, absolute y 
x, + I-y absolute x, relative y 
+ ,-x, + J-y relative x, relative y 

Also see the LOCATE command for information on the pixel cursor. 

EXAMPLES: 

BOX 1, + 10, + 10 Draw a box 10 pixels to the right and 
10 down from the current pixel cursor 
location. 

BOX 1, 10, 10, 60, 60 Draws the outline of a rectangle. 

BOX, 10, 10, SO, 60, 45, 1 Draws a painted, rotated box (a 
diamond). 

BOX , 30, 90, , 45, 1 Draws a filled, rotated polygon. 

Any parameter can be omitted but you must include a comma in its 
place, as in the last two examples. 

NOTE: Wrapping occurs if the degree is greater than 360. 

-Save a binary file from the specified memory locations 

BSAVE ufllename"[,Ddrlve numberl,Udevlce number] 
[,Bbank number],Pstart address TO Pend address 

where: 

• filename is the name you give the file 
• drive number is either 0 or 1 on a dual drive (0 is the defaul t 

for a single drive) 
• device number is the number of disk drive uni t (default is 8) 
• bank number is the number of the bank you specify (0-15) 
• start address is the starting address where the program is 

SAVEd from 

240 BASIC 7,0 ENCYCLOPEDIA-Basic Commands and Statements 



CATALOG 

CHAR 

• end address is the last address in memory which is SAVEd 

This is the same as the SAVE command in the machine language 
MONITOR. 

EXAMPLES: 

BSAVE "SPRITE DATA" ,BO,P3584 TO P4096 Saves the binary lile 
named " SPRITE 
DATA", starling al 
location 3584 through 
4096 (BANK 0) 

BSAVE " PROGRAM.SCR",DO,U9,BO,P3182 TO P8000 

-Display the disk directory 

CATALOG [Ddrive numberll( ON , )Udevtce 
numberll,wlldcard string) 

Saves the binary 
file named 
"PROGRAM.SCA" in 
the memory address 
range 3182 through 
8000 (BANK 0) on 
drive 0, unit 9. 

The CATALOG command displays the directory on the specified 
drive, just like the DIRECTORY command. See the DIRECTORY 
command. 

EXAMPLE: 

CATALOG Displays the disk directory on drive O. 

-Display characters at the specified position on the screen 

CHAR [color source l,x,y[,slrlng][,RVS] 

This is primarily designed to display characters on a bit mapped 
screen, but it can also be used on a text screen. Here's what the 
parameters mean: 

color source . . .. . . . . . . . 0 = Background 
1 = Foreground 

241 BASI C 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



CIRCLE 

x . . . . . . • . ... ...•. . . . . . Character column (O-79) 
(wraps around to the next line in 40· 
column mode) 

y .. . . • .........•. . . . . . Character row (0- 24) 

string .... ..• . ••• . .. . . . String to print 

reverse . . . • . • . • ..... • . • Reverse field flag (0 = off, 1 = on) 

Text (alphanumeric strings) can be displayed on any screen at a 
given location by the CHAR statement. Character data is read from 
the Commodore 128 character ROM area. The user supplies the x 
and y coordinates of the starting position and the text string to be 
displayed. Color source and reverse imaging are optional. 

In 40·column formal the string is continued on the next line if it 
attempts to print past the (40th column) right edge of the screen. 
When used in TEXT mode, the string printed by the CHAR command 
works just like a PRINT string, including cursor and color controL 
These control functions inside the string do not work when the CHAR 
command is used to display text in bit map mode. Upper/lower case 
controls (CHR$ (14) or CHR$ (142)) also operate in bit map mode. 

Mu1ticolor characters are handled differently than standard charac­
ters, First select multicolor1 and multicolor 2 with the COLOR com· 
mand. Set the GRAPHIC mode to multi color. To display the fore­
ground on multicolor 1, characters set the color source in the CHAR 
command to zero and the reverse flag to zero. To display the fore­
ground on mul ticolor ;2. set the color source to (l) and the reverse flag 
to 1. The following example displays the foreground character color 
using a red background. Change the reverse flag to 1 and the char­
acters are displayed in multi color 2 (blue). 

10 Color 2,3: REM multicolor 1 = Red 
20 Color 3,7: REM multicolor 2 = Blue 
30 GRAPHIC 3,1 
30 CHAR O,10,10"TEXT",O 

-Draw circles, ellipses, arcs, etc. at specified posi tions on the 
screen 

CIRCLE [color source],X, Y[,XrX, Yr] 
[,saX,ea][,anglel,inc[ 

242 BASIC 7.0 ENCYC LOPEDIA-Basic Commands and Statements 



-

where: 

color source . . . . ....... 0 = background color 
1 = foreground color 
2 = multicolor 1 
3 = mullicolor 2 

x,V . .. .. •• . . . . . .. .. .. . Center coordinate of the CIRCLE 

xr ... . ..• . . . . • • •. . . . . . X radius (scaled) 

yr . . ... . • • .....•..... . Y radius (default is xr) 

sa ......... . . . . . . . ... ,Starhng arc angle (default a degrees) 

ea . . . . . . ... ...• •. . .... Endlng arc angle (default 360 degrees) 

angle ...• . •.•.•.•.•.. . RotallOn IS clockwise degrees (default 
IS 0 degrees) 

inc . ... . .•...•.•..... . Degrees between segments (defaul t is 
2 degrees) 

•• 
xy xr xy 

e. 

With the CIRCLE statement. the user can oraw a circle. ellipse. arc, 
triangle. octagon or other polygon. The pixel cursor (PC) is left at the 
circumference of the circle at the ending arc angle. Any rotation is 
relative to the center. Setting the y radius equal to the x radius does 
not draw a perfect circle, since the x and y coordinates are scaled 
differently (x = 0 -320 and y = 0-200). Arcs are drawn from the 
starting angle clockwise to the ending angle. The increment controls 
the smoothness of the shape; using lower values results in more 
nearly circular shapes. Specifying the inc greater than 2 creates a 
rough· edged, boxed-in shape. 

The x and y values can place the pixel cursor at absolute coordi­
nates such as (100, 1 00) or at coordinates relative to the previous 
position (+1 - xand + / - y)of the pixel cursor such as(+ 20, - 10). 
The coordinate of one axis (x or y) can be relative and the other can 
be absolute. Here are the possible combinations of ways to specify 
the x and y coordinates: 

243 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Slalemenls 



CLOSE 

CLR 

X,Y 
+1- x,Y 
x.,+f-y 
+1-x,+I-y 

absolute x, absolute y 
relative x, absolute y 
absolute x, relative y 
relative x, relative y 

Also see the LOCATE command for information on the pixel cursor. 

EXAMPLES: 

CIRCLE1 , 160,loo,65,10 Draws an ellipse. 

CIRCLE1 , l60,loo,65,5O Draws a circle. 

CIRClE1 , 60,4O,2O,18",,45 Draws an octagon. 

CIRCLE1,260,4O,2O"",9O Draws a diamond. 

CIRClE1 , 60,14O,2O,18" .. 12O Draws a triangle. 

CIRCLE 1, + 2, + 2,50,50 Draws a circle (two pixels down and 
two to the right) relative to the 
original coordinates of the pixel 
cursor. 

You may omit a parameter, but you must still place a comma in the 
appropriate position. Omitted parameters take on the default values. 

-Close logical file 

CLOSE Ille number 

This statement closes any files used by the DOPEN or OPEN state­
ments. The number following the word CLOSE is the file number to 
be closed. 

EXAMPLE: 

CLOSE 2 Logical file 2 is closed. 

-Clear program variables 

CLR 

This statement erases any variables in memory, but leaves the pro­
gram intact. This statement is automatically executed when a RUN 
or NEW command is given. There is no need to use CLR after edit­
ing, because variables and text no longer share memory. 

244 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



CMD 

COLLECT 

, 

COLLISION 

-Redirect screen output 

CMD logical file number [,wrlt.llat] 

This command sends the output, which normally goes to the screen 
(i.e., PRINT statement, LIST, but not POKES into Ihe screen) to 
another device, such as a disk data file or printer. This device or file 
must be OPENed first. TheCMD command must be lollowed by a 
number or numeric variable referring to the file. The write list can be 
any alphanumeric string or variable. This command is useful for 
printing headings at the top of program listings. 

EXAMPLE: 

Open 1,4 

CMD1 

LIST 

PRINH1 

CLOSE 1 

OPENS device *4. which is the printer. 

All normal output now goes to the printer. 

The LiSTing goes to the printer, not the 
screen-even the word READY. 

Sends oU,tpul back to the screen. 

Closes the liIe. 

-Free inaccessible disk space 

COLLECT [Ddrlve numberl( ON , )Udevlce) 

Use this command to make available any disk space that has been 
allocated to improperly closed (splat) liles, and to delete relerences 
to these files from the directory. Splat files are files that appear on 
the directory with an asterisk next to them. Defaults to device 
number 8. 

EXAMPLE: 

COLLECT DO Free all available space which has been 
incorrectly allocated to improperly ctosed 
files. 

-Define handling for sprite collision interrupt 

COLLISION type [,statement] 

type . . .... . . . .. Type of interrupt, as follows: 
1 = Sprite·to·sprlte collision 
2 = Sprite·lo·display data collision 
3 = light pen (40 columns only) 

statement . .•. .. BASIC line number of a subroutine 

245 BASIC 1.0 ENCYCLOPEDIA-Basic Commands and Statements 



COLOR 

When the specified situation occurs, BASIC will finish processing 
the currently executing instruction and perform a GOSUB to the line 
number given. When the subroutine terminates (it must end with a 
RETURN). BASIC will resume processing where it left off. Interrupt 
action continues until a COLLISION of the same type without a line 
number is specified. More than one type of interrupt may be enabled 
at the same time, but only one interrupt can be handled at a time 
(i.e ., there can be no recursion and no nesting of interrupts). The 
cause of an interrupt may continue causing interrupts for some time 
unless the situation is altered or the interrupt disabled. 

When a sprite is completely off-screen and nol visible, it cannot gen­
erate an interrupt. To determine which sprites have collided since 
the last check, use the BUMP function _ 

EXAMPLE: 

Collision 0, 5000 

Collision 0 

Collision 1, 1000 

Detects a sprite-Io-sprite collision 
and program control sent to 
subroutine at line 5000. 

Stops Interupt action which was 
initiated in above example. 

Detects spnle-to-data collision and 
program control directed to 
subroul1ne In line 1000. 

-Define colors for each screen area 

COLOR source number, color number 

This statement assigns a color to one of the seven color areas: 

Area Source 

o 40-column (VIC) background 
1 40-column (VIC) foreground 
2 mult icolor 1 
3 multicolor 2 
4 40-column (VIC) border 
5 character color (40- or aD-column screen) 
6 aO-column background color 

Colors that are usable are in the range 1-16. 

246 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



CONCAT 

Color Code Color Color Code 
1 Black 9 
2 White 10 
3 Red 11 
4 Cyan 12 
5 Purple 13 
6 Green 14 
7 Blue 15 
B Yellow 16 

Color Numbers in 40-Column Format 

1 Black 9 
2 White 10 
3 Dark Red 11 
4 Light Cyan 12 
5 Light Pur· 

pie 13 
6 Dark Green 14 
7 Dark Blue 15 
B Light Yellow 16 

Color Numbers in aO-Column Format 

EXAMPLE: 

Color 
Orange 
Brown 
Light Red 
Dark Gray 
Medium Gray 
Light Green 
Light Blue 
Light Gray 

Dark Purple 
Dark Yellow 
Light Red 
Dark Cyan 

Medium Gray 
Light Green 
Light Blue 
Light Gray 

Color 0, 1: Changes background color of 40 
column screen to black. 

Color 5, 8: Changes character color to yellow. 

-Concatenate two data files 

CONCAT "file 2" [,Ddrlve number] TO "fU. 1 n 

[,Cdrlve numberl<ON , )Udevlce] 

The CONCAT command attaches file 210 Ihe end of file 1 and relains 
the name of file 1. The device number defaults to 8 and the drive 
number defaults to O. 

EXAMPLE: 

Concat " File B" to " File A" FILE B is attached to FILE A, and 
the combined file is designated 
FILE A. 

247 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



CONT 

COpy 

Concat (AS) to (B$), 01 , U9 The file named by B$ becomes a 
new file with the same name with 
the file named by A$ attached to 
the end of B$-This is performed on 
Unit 9, drive 1 (a dual disk drive). 

Whenever a variable is used as a filename, as in the lasl example, 
the filename variable must be within parentheses. 

-Continue program execution 

CONT 
This command is used to restart a program that has been stopped 
by either using the STOP key, a STOP statement, or an END state­
ment. The program resumes execution where it left off. CONT will 
not resume with the program if lines have been changed or added to 
the program or if any editing of the program is performed on the 
screen. If the program stopped due to an error; or if you have caused 
an error before trying to restart the program, CONT will not work. 
The error message in this case is CANTCONTtNUE ERROR. 

-Copy files from one drive to another in a dual disk drive, or within a 
single drive 

COPY usource filename"[,Ddrlve number]TO"destlnatlon 
fllename"[,Ddrlve numberl(ON , )Udevlce] 

This command copies files from one disk (the source file) to another 
(the destination file) on a dual-diSk drive. It can also create a copy of 
a fi le on the same disk within a single drive, but the filename must be 
different. When copying from one drive to another, the filename may 
be the same. 

The COPY command can also COPY all the files from one drive to 
another on a dual disk drive. In this case the drive numbers are spec­
ified and the source and destination filenames are omitted. 

The default parameters for the COPY command are device number 
8, drive O. 

248 BASIC 7.0 ENCYCLOPEDIA-BasIc Commands and S!atements 



DATA 

DCLEAR 

NOTE: Copying between two single or double disk drive units cannot 
be done. See BACKUP 

EXAMPLES: 

COPY DO, " test" TO 01 , "test prog" Copies "test" from drive 0 
to drive I, renaming it 
"test prog" on drive 1. 

COpy DO, " STUFF" TO 01 , " STUFF" Copies "STUFF" rrom 
drive 0 to dnve 1. 

COpy DO to 01 Copies all hies from drive 
o to drive 1. 

COpy " WORK.PROG" TO " BACKUP" Copies "WORK.PROG" as 
a file called "BACKUP" on 
the same disk (drive 0). 

- Define data to be used by a program 

DATA nst of constants 

This statement is followed by a list of data items to be input into the 
computer's memory by READ statements. The items may be 
numeric or string and are separated by commas. String data need 
not be inside quote marks, unless they contain any of the following 
characters: space, colon, or comma. If two commas have nothing 
between them, the value is READ as a zero if numeric, or as an 
empty string. Also see the RESTORE statement. which allows the 
Commodore 128 to reread data. 

EXAMPLE: 

DATA 100. 200, FRED, " HELLO, MOM", , 3, 14, ABC123 

-Clear all open channels on disk drive 

DCLEAR [Ddrlve numberl( ON , )Udevlce) 

This statement closes all files and clears all open channels on the 
specified device number. Default is DO, U8. This command is analag­
ous to OPEN 10,8,15, " ro" CLOSE 10. 

EXAMPLES: 

OCLEAR DO 

OCLEAR 01 ,US 

Clears all open HIes on drive 0, 
device number 8. 

Clears all open li1es (channels) on 
drive 1. device number 9. 

249 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



DCLOsE 

DEFFN 

DELETE 

-Close disk file 

DC LOSE [#Iogleal file numberl(ON ,Udevfee) 

This statement closes a single file or a\l the files currently open on 
a disk unit. If no logical file number is specified, all currently open 
files are closed. The default device number is 8. Note the following 
examples: 

EXAMPLES: 

OCLOSE 

OCLOSE #2 

OCLOSE ON U9 

Closes all files currently open on unit 8. 

Closes the file associated with the logical file 
number on unit 8. 

Closes aU fi les current ly open on unit 9. 

-Return the value of a user-defined function 

DEF FN name (variable) = expression 

This statement allows definition of a complex calculation as a func­
tion. In the case of a long formula that is used several times within a 
program, this keyword can save valuable program space. The name 
given to the function begins with the letters FN, followed by any 
alphanumeric name beginning with a letter. First, define the function 
by using the statement DEF, followed by the name given to the func­
tion. Following the name is a set of parentheses 0 with a dummy 
numeric variable name (in this case, X) enclosed. Next is an equal 
sign, followed by the formula to be defined. The function can be per­
formed by substituting any number lor X, using the formal shown in 
line 20 of the example below: 

EXAMPLE: 

10 OEF FNA(X) = 12·(34.75·)(/.3) + X 
20 PRINT FNA(7) 

The number 7 is inserted each place X is located in the formula 
given in the DEF statemenl.ln the example above, the answer 
returned is 144. 

-Delete lines of a BASIC program in the specified range 

DELETE [ftrst tine) [-last tine) 

This command can be executed only in direct mode. 

250 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



DIM 

EXAMPLES, 

DELETE 75 

DELETE 1()'SO 

DELETE-SO 

DELETE 75-

Deletes line 75. 

Deletes lines 10 through 50. Inclusive. 

Deletes all lines from the begmnlng 01 the 
program up to and including hne 50. 

Deletes all lines from 75 to the end of the 
program, InclUSive. 

-Declare number of elements in an array 

DIM variable ,subscripts) [,varlable(subscrlpts)] ... 

Before arrays of variables can be used, the program must first exe· 
cute a DIM statement to establish DIMensions of the array (unless 
there are 11 or fewer elements in the array). The DIM statement is 
followed by the name of the array, which may be any legal variable 
name. Then, enclosed in parentheses, put the number (or numeric 
variable) of elements in each dimension. An array with more than 
one dimension is caned a matrix. Any number of dimensions may be 
used, but keep in mind the whole list of variables being created takes 
up space in memory, and it is easy to run out of memory if too many 
are used. Here's how to catculate the amount of memory used by an 
array: 

5 bytes for the array name 
2 bytes for each dimension 
2 bytes/elements for integer variables 
5 bytes/elements for normal numeric variables 
3 bytes/elements for string variables 
1 byte for each character in each string element 

Integer arrays take up two-fifths the space of floating·point arrays 
(e_g_, DIM A % (100) requires 209 bytes; DIM A (100) requires 512 
bytes,) 

More than one array can be dimensioned in a DIM statement by sep­
arating the array variable name by commas. If the program executes 
a DIM statement for any array more than once, the message 
"RE'DIMed ARRAY ERROR" is posted, It is good programming prac­
tice to place DIM statements near the beginning of the program. 

EXAMPLE, 

10 DIM AS(40),B7(15),CC%(4,4,4) 

41 elements, 16 elements, 64 elements 

251 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



DtRECTDRY -Display the contents of the disk directory on the screen 

DIRECTORY [Ddrive numberl, (ON , ) Udevlcel,wlldcard] 

The F3 function key in C128 mode displays the DIRECTORY for 
device number 8, drive O. Use CONTROL S or NO SCROLL to pause 
the display; any key restarts the display after a pause. Use the COM· 
MODORE key to slow down the display. The DIRECTORY command 
cannot be used to print a hard copy. The disk directory must be 
loaded (LOAO"$" ,8) destroying the program currently in memory In 
order to print a hard copy. The default device number is 8, and the 
default drive number is O. 

EXAMPLES: 

DIRECTORY Lists all files on the disk in unit 8. 

DIRECTORY 01, U9, "work" lists the file named "work," on 
drive' of unit 9. 

DIRECTORY "AS· " Lists all files starting with the letters 
"AS" like ABOVE, ABOARD, etc . on 
all drives of unit 8. The asterisk 
specifies a wild card, where all files 
Slarting with "AB" are displayed. 

DIRECTORY DO, " file ? BAK" The? is a wild card that matches 
any single character in that position. 
For example: file' .BAK, file 2.BAK, 
lite 3.BAK all match the string. 

DIRECTORY D1 ,U9 (AS) LISTS the filename stored in the 
variable A$ on device number 9, 
drive 1. Remember, whenever a 
variable is used as a filename, put 
the variable in parentheses. 

NOTE: To print the DIRECTORY of the disk in drive 0, unit 8, use the 
following example: 

LOAO"SO",8 
OPEN4,4:CMD4:LlST 
PRINT#4:CLOSE4 

252 BASIC 7.0 ENCYCLOPEDIA-BasIc Commands and Statements 



DLOAD 

DO/LOOP/WHILEI 
UNTIUEXIT 

-Load a BASIC program from disk 

DLOAD "filename" [,Ddrlve number.,Udevice number] 

This command loads a BASIC program from disk into current mem­
ory. (Use LOAD to load programs from tape.) The program must be 
specified by a filename of up to 16 characters. DLOAD assumes 
device number 8, drive O. 

EXAMPLES: 

OlOAO " BAN KRECS" 

DLOAD (A$) 

Searches the disk for the program 
" BANKRECS" and LOADs it. 

LOADS a program from disk whose 
name is stored in the variable AS, 
An error message is given if A$ IS 

empty. Remember, when a variable 
is used as a filename, it must be 
enclosed in parentheses. 

The DLOAD command can be used within a BASIC program to find 
another program on disk. This is called chaining. 

-Define and control program loop 

DO [UNTIL condition / WHILE condition) statements [EXIT) 
LOOP [UNTIL condition / WHILE condition) 

This loop structure performs the statements between the DO state­
ment and the LOOP statement. If no UNTIL or WHILE modifies either 
the DO or the LOOP statement, execution of the statements in 
between continues indefinitely. If an EXIT statement is encountered 
in the body of a DO loop, execution is transferred to the first state· 
ment following the LOOP statement. DO loops may be nested, follow­
ing the rules defined by the FOR-NEXT structure. If the UNTIL 
parameter is specified, the program continues looping until the con­
dition is satisfied (becomes true). The WHILE parameter is basically 
the opposite of the UNTIL parameter: the program continues looping 
as long as the condition is TRUE. As soon as the condition is no 
longer true, program control resumes with the statement immedi­
ately following the LOOP statement. An example of a condition (bool­
ean argument) is A = 1, or G)65. 

253 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



DOPEN 

EXAMPLE: 

10X=25 
20 DO UNTIL X=O 
30 X=X·1 
40 PRINT "X = " ;X 
50 LOOP 
60 PRINT " End of Loop" 

ThiS example performs the stalmenls 
X = X·, and PAINT "X = ";X until X = O. 
When X = a the program resumes with 
the PRINT "End of Loop" statement 
immediately following LOOP 

10 DO WHILE A$= " ":GETKEY A$:LOOP 
20 PRINT ''The'';AS;''key has been pressed" 

A$ remains null as long as no key is 
pressed. As soon as a key is pressed, 
program control passes to the 
statement immediately following LOOP, 
Print "The";A$; "Key has been 
pressed". The example performs 
GETKEY A$ as long as A$ is a null 
character. This loop constantly checks 
to see if a key on the keyboard is 
being pressed. 

10 OOPEN #S,"SEQFllE"This program opens lite "SEQFflE" 
20 DO and gets data until the ST system 
30 GET #B,AS variable indicates all data is input. 
40 PRINT A$; 
50 LOOP UNTIL ST 
60 OCLOSE #8 

-Open a disk file for a read and/or wnte operation 

DOPEN Hlogical file number,"filename(, ( SIP) ]"[,Lrecord 
length][,Ddrive number][( ON , ) Udevice 
number)[,w] 

where: 

S = Sequential File Type 
P = Program File Type 
L = Record Length = the length of records In a relative fi le only 
W = Write Operation (if nol specified a read operation occurs) 

This statement opens a sequential, relative or random access file 
for a read or write operation. The record length (L) pertains to a rela­
tive file, which can be as long as 255_ The "W" parameter is speci­
fied only during a write (PRINTK) operation in a sequential file. If it is 
not specified, the disk drive assumes the disk operat ion to be a read 
operation. 

254 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



DRAW 

The logical file number associates a number to the file for future disk 
operatons such as a read (inputlf) or write (printH) operation. The 
logical file number can range from 1 to 255. Logical file numbers 
greater than 128 automatically send a carriage return and linefeed 
with each write (printH) command. Logical file numbers less than 
128 send only a carriage RETURN, which can be suppressed with a 
semicolon at the end of the prinIH·command. The default device 
number is 8, and the default drive is O. 

EXAMPLES: 

DOPEN#1, "ADDRESS",W Open the sequential file number 1 
(ADDRESS) for a write operation 

DOPEN" 2 " RECIPES" ,D1 ,Ug Open the sequential file number 2 
(RECIPES) lor a read operation on 
device number 9, drive 1 

- Draw dots, lines and shapes a\ specified positions on screen 

DRAW [color source], X1 , Y1[TO X2, Y2] ... 

This statement draws individual dots, lines, and shapes. Here are the 
parameter values: 

where: 

Color source 

X1,Y1 

X2,Y2 

o Bit map background 
1 BII map foreground 
2 Multicolor 1 
3 Multlcolor 2 
Starting coordinate (0.0 through 
320.200) 
Ending coordinate (0.0 through 
320.2(0) 

The X and Y values can place the pixel cursor at absolute coordi­
nates such as (100, 1 00) or at coordinates relative to the previous 
position (+1- x and +/- y)of the pixel cursor such as (+ 20. - 10). 
The coordinate of one axis (x or y) can be relative and the other can 
be absolute. Here are the possible combinations of ways to specify 
the x and y coordinates: 

X,Y absolute x, absolute y 
+ 1- x,Y relative x, absolute y 
x, + 1- Y absolute x, relative y 
+ 1- x, + J - Y relative x, relative y 

Also see the LOCATE command for information on the pixel cursor. 

255 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



DSAVE 

DVERIFY 

EXAMPLES: 

DRAW 1, 100, 50 Draw a dot. 

DRAW I 10,10 TO 100,60 Draw a line. 

DRAW . 10,10 TO 10,60 TO 100,60 TO 10,10 Draw a triangle . 

You may omit a parameter but you still must include the comma that 
would have followed the unspecified parameter, Omitted parameters 
take on the default values. 

-Save a BASIC program file 10 disk 

DSAVE "fllename" [,Ddrlve numberl< ON I )Udevlce 
number] 

This command slores (SAVEs) a BASIC program on disk. (See SAVE 
to store programs on tape.) A filename up to 16 characters long must 
be supplied. The default device number is 8, while the default drive 
number is O. 

EXAMPLES: 

DSAVE " BANKRECS" 

DSAVE (AS) 

DSAVE "PROG 3",D1 ,U9 

SAVEs the program "BANKRECS" to 
disk. 

SAVEs the disk program named in 
the variable A$. 

SAVEs the program "PROG 3" to 
disk on unit number 9, drive' . 

-Verify the program in memory against the one on disk 

DVERIFY "fllename"[,Ddrlve numberl(ON , ) Udevlce 
number] 

This command causes the Commodore 128to check the program 
on the specified drive against the program in memory. The default 
drive number is 0 and the default device number is 8. 

NOTE: If a graphic area is allocated or reallocated after a SAVE, an 
error occurs. Technically this is correct. Because BASIC text is 
moved from its original (SAVEd) location when a bit mapped graphics 
area is allocated or deallocated, the original location where the C128 
verified the SAVEd program changes. Hence. VERIFY, which per­
forms byte-to-byte comparisons, fails, even though the program is 
valid. 

256 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



END 

ENVE~OPE 

To verify Binary data, see VERIFY "filename",S,1 format, under 
VERIFY command description. 

EXAMPLES: 

DVERIFY " C128" Verifies program "Ct28" on drive 0, 
unit 8. 

DVERIFY "SPRITES",DO,U9 Verifies program "SPRITES" on 
drive 0, deVice 9. 

- Def ine the end of program execut ion 

END 

When the program encounters the END statement, it stops RUNning 
immediately. The CONT command can be used to restart the pro­
gram at the next statement (if any) following the END statement. 

- Def ine a musical instrument envelope 

ENVELOPE n,[,atk] [,dec] [,sus] [,reIX,wl] [,pw] 

where: 
n . .. . . . . . . .. ....... . . . Envelope number (0-9) 
atk . . . . .... . . . . . . . . . . . Attack rale (0,15) 
dec . . ... . •• • •• .. . . . . . . Oecay rate (0,15) 
sus . . ...... . . . . . ... . . . Sustain (0·15) 
rei ........ . . . . .. ..... Release rate (0-15) 
wI. ..... . ......• . . ... . Waveform: 0 ::; triangle 

1 = sawtooth 
2 ::; variable pulse (square) 
3 ::; nOise 
4 ::; ring modulation 

pw .... . . . .......•.... Pulse width (0-4095) 

A parameter that is not specified will retain its predefined or cur­
rently redefined value. Pulse width applies to the width of the varia­
ble pulse waveform (wf = 2) only and is determined by the formula 
pwout ::; pw/40.95. The Commodore 128 has initialized the following 
10 envelopes: 

257 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



FAST 

FETCH 

FILTER 

258 

n A D S R wi pw instrument 

ENVELOPE 0, 0, 9, 0, 0, 2, 1536 piano 

ENVELOPE 1, 12, 0, 12, 0, accordion 

ENVELOPE 2, 0, 0, 15, 0, ° calliope 

ENVELOPE 3, 0, 5, 5, 0, 3 drum 

ENVELOPE 4, 9, 4, 4, 0, ° flute 

ENVELOPE 5, 0, 9, 2, 1, guitar 

ENVELOPE 6, 0, 9, 0, 0, 2, 512 harpsichord 

ENVELOPE 7, 0, 9, 9, 0, 2, 2048 organ 

ENVELOPE 8, 8, 9, 4, 1, 2, 512 trumpet 

ENVELOPE 9, 0, 9, 0, 0, ° xylophone 

To play predefined musical instrument envelopes,you can simply 
specify the envelope number and omit the rest of the parameters 
since they retain their predefined values. 

-Put machine in 2 MHz mode of operation 

FAST 

This command initiates 2M Hz mode, causing the VIC 40·column 
screen to be turned off. All operations (except 1/0) are speeded up 
considerably. Graphics may be used, but will not be visible until a 
SLOW command is issued. 

-Get data from expanSIon (RAM module) memory 

FETCH #bytes, IntsB, expb, expsa 

where bytes = number of bytes to get from expansIon memory 
(1-65536) 

intsa = starting address of host ram (0-65535) 
expb = 64k expansion RAM bank number (0-3) 
expsa -:::: starting address of expansion RAM (0-65535) 

-Define sound (SID chip) filter parameters 

FILTER [freq] [,Ip] [,bpI [,hPJ [,res] 

BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



FORlTO/STEPI 
NEXT 

where: 

freq .. . ..••. . .. ... . . Filler cul'off frequency (0·2047) 
Ip . . . . . . . . ... . .. . . . . Low·pass filler on (1). off (0) 
bp .... . . ... .. . . .. . . . Bank·pass filler on (1), off (0) 
hp . .... ... . . ... . .... High·pass filler on (1). off (0) 
res .... . ...... .. .. . . Resonance (0-15) 

Unspecified parameters result in no change to the current value. 

You can use more than one type of filter at a time. For example, both 
low-pass and high-pass filters can be used together to produce a 
notch·(or band-reject) filter response. For the filter to have an audible 
effect, at least one type of filter must be selected and at least one 
voice must be routed through the filter. 

EXAMPLES: 

FILTER 1024,0,1,0,2 

FILTER 2000,1,0,1,10 

Set the cutoff frequency at 1024, 
select the band pass filter and a 
resonance level of 2. 

Set the cutoff frequency at 2000, 
select both the low pass and high 
pass filters (to form a notch reject) 
and set the resonance level at 10. 

-Define a repetitive program loop structure 

FOR variable = start value TO end value [STEP Increment] 

This statement works wi th the NEXT statement to set up a section of 
the program (i.e. , a loop) that repeats for a set number of times. This 
is useful when something needs to be counted or something must be 
done a certain number of times (such as printing). 

This statement executes all the commands enclosed between the 
FOR and NEXT statements repetitively, according to the start and 
end values. The start value and the end value are the beginning and 
ending counts for the loop variable. The loop variable is added to or 
subtracted from during the FOR/NEXT loop. 

The logic of the FOR/NEXT statement is as follows. First, the loop 
variable is set to the start value. When the program reaches a pro­
gram line containing the NEXT statement, it adds the STEP incre­
ment (default = 1) to the value of the loop variable and checks to 
see if it is higher than the end value of the loop. If the loop variable is 
less than the end value, the loop is executed again, starting with the 

259 BASIC 7.0 ENCYCLOPEDIA _Basic Commands and Statements 



GET 

statement immediately fo!lowing the FOR statement. If the loop vari­
able is greater than the end value, the loop terminates and the pro­
gram resumes immediately following the NEXT statement. The oppo­
site is true jf the step size is negative. See also the NEXT statement. 

EXAMPLE: 

10 FOR L = 1 TO 10 
20 PRINT L 
30 NEXT L 
40 PRINT "I'M DONE! L = "L 

This program prints the numbers from one to 10 followed by the mes­
sage I'M DONE' L = 11. 

The end value of the loop may be followed by the word STEP and 
another number or variable. In this case, the value following the 
STEP is added each time instead of one. This allows counting back­
wards, by fractions, or in increments other than one. 

The user can set up loops inside one another. These are known as 
nested loops. Care must be taken when nesting loops so the last 
loop to start is the first one to end. 

EXAMPLE: 

10 FOR L = 1 TO 100 
20 FOR A = 5 TO 11 STEP .5 
30 NEXT A 
40 NEXT L 

The FOR . .. NEXT loop in lines 20 and 30 are nested inside the one 
in line 10 and 40. Using a STEP increment of .5 is used to illustrate 
the fact that floating point indices are valid. 

-Receive input data from the keyboard, one character at a time, 
without waiting for a key to be pressed 

GET variable list 

The GET statement is a way to receive data from the keyboard, one 
character at a time. When GET is encountered in a program, the 
character that is typed is stored in the C128 memory. If no character 
is typed, a null (empty) character is relurned, and Ihe program con­
tinues without waiting for a key. There is no need to hit the RETURN 
key. The word GET is followed by a variable name, ei ther numeric or 
string. 

260 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



GETKEY 

OET# 

If the C128 intends to GET a numeric key and a key besides anum· 
ber is pressed, the program stops and an efror message is dis­
played. The GET statement may also be put into a loop, checking for 
an empty result. The GETKEY statement could also be used in this 
case. See GETKEY for more information. The GET and GETKEY 
statements can be executed only within a program. 

EXAMPLE: 

10 DO:GETA$:LOOP UNTIL AS = " A" This line waits for the A key 
to be pressed to continue. 

20 GET B, C, 0 GET numeric variables B,C 
and D from the keyboard 
without w3lling for a key to 
be pressed. 

-Receive input data from the keyboard, one character at a time and 
wait for a key to be pressed 

OETKEY variable nst 

The GETKEY statement is very similar to the GET statement. Unlike 
the GET statement. GETKEY waits for the user to type a character 
on the keyboard. This lets the computer wait for a single character to 
be typed. This statement can be executed only within a program. 

EXAMPLE: 

10 GETKEY AS 

This line waits for a key to be pressed. Typing any key continues the 
program. 

10 GETKEY AS,BS,CS 
This line waits for three alphanumeric characters to be entered from 
the keyboard. 

- Receive input data from a tape, disk or RS232 

OET# file number, variable list 

This statement inputs one character at a time from a previously 
opened file. Otherwise, it works like the GET statement. This state­
ment can be executed only within a program. 

261 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Slatemenls 



0064 

OOSUB 

EXAMPLE: 

10 GET#1 ,A$ 

-Switch to C64 mode 

0064 

This example receives one character, which is 
stored in the vanable A$, from file number 1. 
This example assumes that file 1 was 
previously opened See the OPEN statement. 

This statement switches from C128 mode to C64 mode. The ques­
tion "Are You Sure?" is displayed in response to the G064 statement. 
If Y is typed, then the currently loaded program is 10Sl and control is 
given to C64 mode; otherwise, jf any other key is pressed, the com· 
puter remains in C128 mode. This statement can be used in direct 
mode or within a program. The prompt is nol displayed in program 
mode. 

-Call a subroutine from the specified line number 

GOSUB line number 

This statement is similar to the GOTO statement, except the Commo­
dore 128 returns from where it came when the subroutine is finished. 
When a line with a RETURN statement is encountered, the program 
jumps back to the statement immediately following the GOSUB 
statement. 

The target of a GOSUB statement is called a subroutine. A subrou­
tine is useful jf a task is repeated several times within a program. 
Instead of duplicating the section of program over and over, set up a 
subroutine, and GOSUB to it at the appropriate time in the program. 
See also Ihe RETURN slalement. 

EXAMPLE: 

20 GOSUB 800 This example calls the subroullne beginning at 
line 800 and executes it. All subroutines must 
terminate with a RETURN statement. 

800 PRINT " HI THERE" : RETURN 

262 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



GOTO/GOTO 

GRAPHIC 

-Transfer program execution to the specified line number 

GOTO line number 

After a GOTD statement is encountered in a program, the computer 
executes the statement specified by the line number in the GOTD 
statement. When used in direct mode, GOTD executes (RUNs) the 
program starting at the specified line number without clearing the 
variables. This is the same as the RUN command except it does not 
clear variable values. 

EXAMPLES: 

10 PRINT"COMMODORE" The GOTO in line 20 makes line 10 
20 GOTO 10 repeat continuously until RUN/STOP is 

pressed. 

GOTO 100 

-Select a graphic mode 

Starts (RUNs) the program starling al 
line 100, without clearing the variable 
storage area. 

1) GRAPHIC mode [,elearl,s] or 
2) GRAPHIC CLR 

This statement puts the Commodore 128 in one of the six graphic 
modes: 

mode description 

o 40-column text 
1 standard bit-map graphics 
2 slandard bit-map graphics (split screen) 
3 mullicolor bit-map graphics 
4 multicolor bit-map graphics (split screen) 
5 aO-column texl 

The clear parameter specifies whether the bit mapped screen is 
cleared (equal to 1) upon running the program, or left intact (equal to 
0)_ The S parameter indicates the starting line number of the split 
screen when in graphic mode 2 or 4 (multi color or standard bit map 
split screen modes)_ The default starting line number of the split 
screen is 19_ 

When executed, GRAPHIC 1·4 allocates a 9K·bil mapped area. The 
start of BASIC text area is moved above the bit -map area, and any 
BASIC program is automatically relocated. This area remains allo-

263 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



HEADER 

caled even if Ihe user relurns 10 TEXT mode (GRAPHIC 0). II Ihe 
clear option is specified as 1, the screen is cleared. The GRAPHIC 
CLA command deallocates the 9k, bit-mapped area, places it in its 
original local ion below the bit-mapped area and makes it available 
once again for BASIC text. 

EXAMPLES: 

GRAPHIC 1,1 

GRAPHIC 4,0,10 

GRAPHIC 0 

GRAPHIC 5 

GRAPHIC CLR 

-Format a diskette 

Select standard bit map mode and clear the 
bit map. 

Select split screen mullicolor bit map mode, 
do not clear the bit map and start the split 
screen at line 10. 

Select 40·column text. 

Select BO-column lext. 

Clear and deallocate the bit map screen. 

HEADER "dlskname" [,II.d.] [,Ddrlve number] 
[( ON , )Udevlce number] 

Before a new disk can be used for the first lime, it must be formatted 
with the HEADER command, The HEADER command can also be 
used to erase a previously formatted disk, which can then be reused. 

When you enter a HEADER command in direct mode, the prompt 
ARE YOU SURE? appears. In program mode, the prompt does not 
appear. 

ThiS command divides the disk into sections called blocks. It creates 
a table of contents of files, called a directory. The diskname can be 
any name up to 16 characters long. The Ld. number is any two alpha· 
numeric characters. Give each disk a unique i.d. number. Be careful 
when using the HEADER command because it erases all stored 
data. 

You can HEADER a diskette quicker if it was already formatted, by 
omitting the new disk Ld. number. The old i.d. number is used. The 
Quick header can be used only if the disk was previously formatted, 
since it clears out the directory rather than formatting the disk. The 
default device number is 8. The drive number musl be specified (0 
for a single disk drive). 

264 BAStC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



HELP 

As a precaution, the system asks "ARE YOU SURE?" before the 
Commodore 128 completes the operation. Press the "Y" key to per­
form the HEADER, or press any other key to cancel it. 

The HEADER command reads the disk command error channel, and 
jf an error is encountered. the error message "?BAO DISK ERROR" 
is displayed. 

The HEADER command is analogous to the BASIC 2.0 command: 

OPEN 1,8,15,"NO:diskname,Ld." 

EXAMPLES: 

HEADER " MY DISK", 123, 00 This HEADERS "MYDI5K" 
using Ld 123 on drive 0, 
(default) device number 8. 

HEADER " REeS", 145, 01 , ON U9 This HEADERS "RECS" using 
i.d 145, on Drive 1, device 
number 9 

HEADER "C128 PROGRAMS", 00 This is a quick header on 
drive 0, device number 8, 
assuming the disk in the drive 
was already formatted. The 
old Ld. is used. 

HEADER (AS),I(BS),DO,U9 This example HEADERS the 
diskette with the name 
specified by the variable A$, 
and the i.d. specified by the 
variable B$, on drive 0, 
device number 9. 

-Highlight the line where the error occurred 

HELP 

The HELP command is used after an error has been reported in a 
program. When HELP is typed in 40-column format, the line where 
the error occurs is listed, with the portion containing the er ror dis­
played in reverse field. In BO-column format, the portion of the line 
where the error occurs is underlined. 

265 BAStC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



IFITHEN/ ELSE -Evaluate a conditional expression and execu te portions of a pro­
gram depending on the outcome of the expression 

IF expression THEN statements [:ELSE else-clause] 

The IF . . . THEN statement evaluates a BASIC expression and takes 
one of two possible courses of action depending upon the outcome 
of the expression. If the expression is true, the slatemenl(s) following 
THEN is executed. This can be any BASIC statement. Ii the expres­
sion is false, the program resumes with the program line immedi­
ately following the program line containing the IF statement, unless 
an ELSE clause is present. The entire IF .. . THEN statement must be 
contained within 160 characters. Also see BEGIN/BEND. 

The ELSE clause, if present, must be on the same line as the IF ... 
THEN portion of the statement, and separated from the THEN 
clause by a colon. When an ELSE clause is present, it is executed 
only when the expression is false. The expression being evaluated 
may be a variable or formula, in which case it is considered true if 
nonzero, and false if zero. In most cases, there is an expression 
involving relational operators ( = , (, ), ( = , ) = , (»). 

The IF ... THEN statement can take two alternate forms: 

IF expression THEN line number 
or: 

IF expression GOTO line number 

These forms transfer program execution to the specified line number 
if the expression is true. Otherwise, the program resumes with the 
program line number immediately following the line containing the IF 
statement. 

EXAMPLE: 

50 IF X ) 0 THEN PRINT "OK": ELSE END 

This line checks the value of X. If X is greater than 0, the statement 
immediately fallowing the keyword THEN (PRINT "OK") is executed 
and the ELSE clause is ignored. If X is less than or equal to 0, the 
ELSE clause is executed and the statement immediately following 
THEN is ignored. 

266 BASIC 7.0 ENCYCLOPEOIA- Basic Commands and Statements 



INPUT 

INPUT# 

10 IF X = 10 THEN 100 This example evaluates the 
value of X. IF X equals 10, the 

20 PRINT "X does not equal 10" program control is transferred 10 
line loa and the message "X 

99 STOP EQUALS 10" is printed. IF X 
100 PRINT "X equals 10" does not equal 10, the program 

resumes with line 20, the C128 
prints the prompt "X does not 
equal 10" and the program 
stops. 

-Receive a data string or a number from the keyboard and wail for 
the user to press RETURN 

INPUT ["prompt string"j] variable list 

The INPUT statement asks for data from the user while the program 
is RUNning and places the data into a variable or variables. The pro­
gram stops, prints a question mark (?) on the screen, and waits for 
the user to type the answer and hit the RETURN key. The word 
INPUT is followed by a prompt string and a variable name or list of 
variable names separated by commas. The message in the prompt 
string inside Quotes suggests (prompts) the information the user 
should enter. If this message is present, there must be a semicolon 
(;) after the closing quote of the prompt. 

When more than one variable is INPUT, separate them by commas. 
The computer asks for the remaining values by printing two Question 
marks (??). If the RETURN key is pressed without INPUTting a value, 
the INPUT variable retains the value previously input. The INPUT 
statement can be executed only within a program. 

EXAMPLE: 

10 INPUT "PLEASE TYPE A NUMBER";A 
20 INPUT "AND YOUR NAME" ;AS 
30 PRINT AS " YOU TYPED THE NUMBER";A 

-Inputs data from a file into the computer's memory 

INPUT# file number, variable list 

This statement works like INPUT, but takes the data from a previously 
OPENed file, usually on a disk or tape instead of the keyboard. No 
prompt string is used. This statement can be used only within a pro­
gram. 

267 BASIC 7.0 ENCYCLOPEDIA-BasIc Commands and Statements 



KEY 

EXAMPLE: 

10 OPEN 2,8,2 
20 INPUT#2, AS, C, OS 

This statement INPUTs the data stored in variables A$, C and 0$ 
from the disk file number 2, which was OPENed in line 10. 

-Define or list function key assignments 

KEY (key number, string] 

There are eight function keys (F1·F8) available to the user on the 
Commodore 128: four unshifted and four shifted. The Commodore 
128 allows you to perform a function or operation for each time the 
specified function key is pressed. The definition assigned to a key 
can consist of data, or a command or series of commands. KEY with 
no parameters specified returns a listing displaying all current KEY 
assignments. If data is assigned to a function key, that data is dis­
played on the screen when that function key is pressed. The maxi­
mum length for all the definitions together is 246 characters. 

EXAMPLE: 

KEY 7, " GRAPHICO" + CHR$(13) + "LIST" + CHR$(13) 

This tells the computer to select the (VIC) text screen and list the 
program whenever the F7 key is pressed (in direct mode). CHR$(13) 
is the ASCII character for RETURN and performs the same action as 
pressing the RETURN key, Use CHR$(27) for ESCape, Use CHR$(34) 
to incorporate the double quote character into a KEY string. The 
keys may be redefined in a program. For example: 

10 KEY 2,PRINT DSS + CHR$(13) 

This tells the computer to check and display the disk drive error 
channel variables (PRINT OS$) each time the F2 function key is 
pressed. 

10 FOR 1=1 to 8:KEY I, CHR$(I + 132):NEXT 

This defines the function keys as they are defined on the Commo· 
dore 64. 

To restore all function keys to their BASIC default values, reset the 
Commodore 128 by pressing the RESET button. 

268 BASIC 7.0 ENCYCLOPEDIA- Basic Commands and Statemen l s 

-



LET 

LIST 

-

-Assigns a value to a variable 

[LET] variable = expression 

The word LET is rarely used in programs, since it is not necessary. 
Whenever a variable is defined or given a value, LET is always 
implied. The variable name that receives the result of a calculation is 
on the left side of the equal sign. The number, string or formula is on 
the right side. You can only assign one value with each (implied) LET 
statement. For example, LET A = B = 2 is illegal. 

EXAMPLE: 

10 LET A = 5 Assign the value 5 to numeric variable A. 

20 B = 6 Assign the value 6 to numeric variable B. 

30 C = A • B + 3 Assign the numeric variable C, the value 
resulting from 5 times 6 plus 3. 

40 0$ = "HELLO" Assign the sIring "HELLO" to string variable 
D$. 

-list the BASIC program currently in memory 

LIST [first line) [-last line) 

The LIST command displays a BASIC program listing that has been 
typed or LOADed into the Commodore t 28's memory so you can 
read and edit it. When LIST is used alone (without numbers following 
it), the Commodore 128 gives a complete LISTing of the program on 
the screen. The listing process may be slowed down by holding 
down the COMMODORE key, paused by CONTROL S or NO SCROLL 
KEY (and resumed by pressing any other key), or stopped by hitting 
the RUN/STOP key. If the word LIST is followed by a line number, the 
Commodore 128 shows only that line number. If LIST is typed with 
two numbers separated by a dash, all lines from the first to the sec­
ond line number are displayed. If LIST is typed followed by a number 
and just a dash, the Commodore 128 shows all lines from that num· 
ber to the end of the program. And if LIST is typed with a dash, then a 
number, all lines from the beginning of the program to that line num· 
ber are LISTed. By using these variations, any portion of a program 
can be examined or brought to the screen for modification. In Com­
modore 128 mode, LIST can be used in a program and the program 
can resume with the CONT command. 

269 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



LOAD 

EXAMPLES: 

LIST 

LIST 100-

LIST 10 

LIST -100 

LIST 10-200 

Shows entire program. 

Shows from line 100 until the end of the 
program. 

Shows only line 10 

Shows all line from the beglnntng through line 
100. 

Shows lines from 10 to 200. Inclusive. 

-Load a program from a peripheral device such as the disk drive or 
Dalassette 

LOAD "filename" [,device number] [,relocate flag] 

This is the command used to recall a program stored on disk or cas­
sette tape. Here, the filename is a program name up to 16 charac­
ters long, in quotes. The name must be followed by a comma (out­
side the quotes) and a number which acts as a device number to 
determine where the program is stored (disk or tape). If no number is 
supplied, the Commodore 128 assumes device number 1 (the Datas­
set Ie tape recorder). 

The relocate flag is a number (0 or 1) that determines where a pro­
gram is loaded in memory. A relocate flag of 0 tells the Commodore 
128 to load the program at the start of the BASIC program area. A 
flag of 1 tells the computer to LOAD from the point where it was 
SAVEd. The default value of the relocate flag is O. The program 
parameter of 1 is generally used when loading machine language 
programs. 

The device most commonly used with the LOAD command is the 
disk drive. This is device number 8. though the DLOAD command is 
more convient to use when working with disk. 

If LOAD is typed with no arguments, followed by RETURN, the C128 
assumes you are loading from tape and you are prompted to "PRESS 
PLAY ON TAPE". If you press PLAY, the Commodore 128 starts look­
ing for a program on tape. When the program is found. the Commo­
dore 128 prints FOUND"filename", where the filename is the name 
of the first file which the Datassette finds on the tape. Press the 
Commodore key to LOAD the found filename. or press the spacebar 
to keep searching on the tape. Once the program is LOADed, it can 
be RUN, USTed or modified. 

270 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



LOCATE 

EXAMPLES, 

LOAD Reads in the next program from tape. 

LOAD "HELLO" Searches tape for a program called 
HELLO, and LOADs it if found. 

LOAD (A$),8 LOADs the program from disk whose 
name is stored in the variable A$, 

lOAO" HELlO",8 Looks for the program called HELLO on 
disk drive number 8, drive O. (This is 
equivalent to DLOAD " HELLO"). 

LOAD" MACHLANG",8,1 LOADs the machine language program 
called " MACHLANG" into the location 
from which it was SAVEd. 

The LOAD command can be used within a BASIC program to find 
and RUN the next program on a tape or disk. This is called chaining. 

-Position the bit map pixel cursor on the screen 

LOCATEx,y 

The LOCATE statement places the pixel cursor (PC) at any specified 
pixel coordinate on the screen. 

The pixel cursor (PC) is the coordinate on the bit map screen where 
drawing of circles, boxes, lines and points and where PAINTing 
begins. The PC ranges from X and Y coordinates 0,0 through 
320,200. The PC is not visible like the text cursor but it can be con­
trolled through the graphics statements (BOX,CIRCLE,DRAW etc.) 
The default location of the pixel cursor is the coordinate specified as 
the X and Y portions in each particular graphics command. So the 
LOCATE command does not have to be specified. 

The X and Y values can place the pixel cursor at absolute coordi­
nates such as (10Q, 100) or at coordinates relative to previous posi­
tion ( + 1- x and + 1- y) of the pixel cursor such as (+ 20, - 10). The 
coordinate of one axis (x or y) can be relative and the other can be 
absolute. Here are the possible combinations of ways to specify the 
x and y coordinates: 

X,Y 
+/- X,y 
x,+/-y 
+1-x,+I-y 

absolute x, absolute y 
relative x, absolute y 
absolute x, relative y 
relative x, relative y 

271 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



MONITOR 

MOVSPR 

EXAMPLE: 

LOCATE 160,100 Positions the PC in the center of the bit map 
screen. Nothing will be seen unlil something 
is drawn. 

LOCATE + 20,100 Move the pixel cursor 20 pixels to the right of 
the last PC position and place it at Y 
coordinate 100. 

LOCATE - 30, + 20 Move the PC 30 pixels to the left and 20 
down from the previous PC position. 

The PC can be found by using the RDOT(O) function to get the X· 
coordinate and ROOT(1) to get the V-coordinate. The color source of 
the dot al the PC can be found by PRINTing ADOT(2). 

-Enter the Commodore 128 machine language monitor 

MONITOR 

See Appendix J for details on the Commodore 128 Machine Lan­
guage Monitor. 

-Position or move sprite on the screen 

1) MOVSPR number,K,v Place the specified spri te al absolute 
coordinate x,Y. 

2) MOVSPR number +,. K, +,. y 
Move sprite relative to the position of the 
pixel cursor. 

3) MOVSPR number,xiY Move sprite distance x at angle y relative 
to the pixel cursor. 

4) MOVSPR number,x angle Ny speed 

where: 

Move sprite at an angle (x) relative to its 
original coordinates, in the clockwise 
direction and at the specified speed (y). 

number is sprite's number (' through 8) 
(,x1 ,y1 ) is coordinate of the sprite location. 

ANGLE is the angle (0-360) of motion in the clockwise direction rela· 
tive to ,he sprites original coordinate. 

SPEED is a speed (0-15) in which the sprite moves_ 

272 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



NEW 

ON 

-

273 

This statement locates a sprite at a specific location on the screen 
according to the SPRITE coordinate plane (nol the bit map plane) or 
initiates sprite motion at a specified rate. See MOVSPR in Section 6 
for a diagram of the sprite coordinate system. 

EXAMPLES: 

MOVSPR " 1 SO, 1SO 

MOVSPR 1, + 20, - 30 

MOVSPR 4, - SO, + 100 

PoSition sprite 1 near the cenler of 
the screen, x,y coordinate 150.150. 

Move spnle 1 to the right 20 
coordinates and up 30 coordinates. 

Move sprite 4 to the tell 50 
coordinates and down 100 
coordinates. 

MQVSPR 5, 45 #15 Move sprite 5 at a 45 degree angle 
in the clockwise direction, relative to 
its original x and y coordinates. The 
spri te moves at the fastest rate (15). 

NOTE: Once you specify an angle and a speed in the third form of 
the MOVSPR statement, you must sellhe angle back to zero before 
moving other sprites, or their movement will be affected. 

-Clear (erase) program and variable storage 

NEW 

This command erases the entire program in memory and clears any 
variables that may have been used. Unless the program was stored 
on disk or tape, it is lost. Be careful with the use of this command. 
The NEW command also can be used as a statement in a BASIC 
program. However, when the Commodore 128 gets to this line, the 
program is erased and everything stops. 

-Conditionally branch to a specified program line number accord­
ing to the results of the specified expression 

ON expre •• lon ( GOTO/OOSUB ) line #1 [, line #2, •.• ] 

This statement can make the GOTO and GOSUB statements operate 
like special versions 01 the (conditional) IF statement. The word ON is 
followed by a logical or mathematical expression, then either of the 
keywords GOTO or GOSUB and a list 01 line numbers separated by 
commas. If the result of the expression is 1, the first line in the list is 
executed. If the result is 2, the second line number is executed and 
so on. If the result is 0, or larger than the number of line numbers in 

BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



OPEN 

the list, the program resumes with the line immediately following the 
ON statement. If the number is negative, an ILLEGAL QUANTITY 
ERROR results. 

EXAMPLE: 

10 INPUT X:IF X(O THEN 10 
20 ON X GOTO 30, 40, SO, 60 When X::: 1,ON sends control to the 
25 STOP first line number in the list (30) 

30 PRINT "X = 1" 
40 PRINT " X = 2" 
50 PRINT " X = 3" 
60 PRINT " X = 4" 

-Open files for input or output 

When X::: 2, ON sends control to the 
second line (40),etc 

OPEN logical file number, device number [,secondary 
address] [,"filename, filetype, mode")I[,cmd string» 

The OPEN statement allows the Commodore 128 to access files 
within devices such as a disk drive, a Datassette cassette recorder, 
a printer or even the screen of the Commodore 128. The word OPEN 
is followed by a logical file number, which is the number to which all 
other BASIC input/output statements will refer, such as 
PRINT#(write), INPUT#(read), etc. This number is from 0 to 255. 

The second number, called the device number, follows the logical file 
number. Device number 0 is the Commodore 128 keyboard; 1 is the 
cassel Ie recorder; 3 is the Commodore 128 screen, 4-7 are Ihe 
printer(s); and 8-11 are reserved for disk drives. It is often a good 
idea 10 use the same file number as the device number because it 
makes it easy to remember which is which. 

Following the device number may be a third parameter called the 
secondary address. In the case of the cassette, this can be 0 for 
read, 1 for write and 2 for write with END·OF-TAPE marker at the 
end. In the case of the disk, the number refers to the channel num· 
ber. See your disk drive manual for more information on channels 
and channel numbers. For the printer, the secondary addresses are 
used to select certain programming functions. 

There may also be a filename specified for disk or tape OR a string 
following the secondary address, which could be a command to the 
disk/tape drive or the name of the file on tape or disk. If the filename 

274 BASIC 1.0 ENCYCLOPEDIA-Basic Commands and Statements 



PAINT 

is specified, the type and mode refer to disk files only. File types are 
PROGRAM, SEQUENTIAL, RELATIVE and USER; modes are READ 
and WRITE. 

EXAMPLES: 

10 OPEN 3,3 OPENs the screen as file number 3. 

20 OPEN 1,0 OPENs the keyboard as file number 1. 

30 OPEN 1,l ,o,"00r" OPENs the cassette for reading, as file 
number I, using "DOT" as the filename. 

OPEN 4,4 OPENs the printer as file number 4. 

OPEN 15,8,15 OPENs the command channel on the disk 
as lile 15, with secondary address 15. 
Secondary address 15 is reserved for the 
disk drive error channel. 

5 OPEN 8,8,12,"TESTFILE,SEO,WRITE" OPENs a sequential disk 
file lor writing called 
TESTFI LE as file 
number B. with 
secondary address 12. 

See also: CLOSE, CMD, GEH, INPUH, and PRI NTH statements and 
system variables ST, OS, and DS$. 

-Fill area with color 

PAINT [color source],.,y[,mode] 

where: 

color source ........... 0 Bit map foreground 
1 Bit map background (default) 
2 Mu1ticolor 1 
3 Multicolor 2 

x,Y ..•........••• . ..• . starting coordinate. scaled (default at 
pixel cursor (PC)) 

mode .. . ..... .• .... .. 0 = paint an area defined by the color 
source selected 
1 = paint an area defined by any non· 
background source 

The PAINT command fills an area with color. It fills in the area around 
the specified point until a boundary of the same source is encoun· 
teredo For example, if you draw a circle in the foreground color 

275 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



PLAY 

source, star t PAINTing the circle where the coordinate assumes the 
background source. The Commodore 128 will only PAINT where the 
specified source in the PAINT statement is different than the source 
of the x and y pixel coordinate. It cannot PAINT pOints where the 
sources are the same in the PAINT statement and the pixel coordi­
nate. The x and y coordinate must lie completely within the boundary 
of Ihe shape you intend 10 PAINT, and Ihe source at Ihe slar ling pixel 
coordinate and the specified color source must be different. 

The x and y values can place the pixel cursor at absolute coordi­
nates such as (100, 1 00) or at coordinates relative to previous posi­
tion (+ /- x and + 1- y) of the pixel cursor such as (+ 20, - 10). The 
coordinate of one axis is (x or y) can be relative and the other can be 
absolute. Here are the posible combinations of ways to specify the 
x and y coordinates: 

X,Y 
+/ - X,Y 
x, +/-y 
+1- x,+I-y 

absolute x, absolute y 
relative x, absolute y 
absolute x, relative y 
relative x, relative y 

Also see the LOCATE command for information on the pixel cursor, 

EXAMPLE: 

10 CIRCLE 1, 160,100,65,50 

20 PAINT 1, 160,100 

10 BOX 1, 10, 10, 20, 20 

20 PAINT 1, 15, 15 

30 PAINT 1, + 10, + 10 

Draws an outline of a circle. 

Fills in the circle with color from 
source 1 (VIC foreground), assuming 
pOint 160,100 is colored in the 
background color (source 0). 

Draws an outline of a box. 

Fills the box with color from source 
1, assuming point 15,15 is colored in 
the background source (0). 

PAINT Ihe screen in the foreground 
color source at the coordinate 
relative to the pixel cursor's previous 
position plus 10 in both the vertical 
and horizontal positions. 

-Defines and plays musical notes and elements 

PLAY "Vn.On.Tn.UnJXn.elements" 

276 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



where: 

Vn = Voice(n= 1·3) 
On = Octave (n = 0·6) 
Tn = Tune Envelope Defaults (n = 0·9) 

0= piano 
1 = accordion 
2 = calliope 
3 = drum 
4 = flute 
5 = guitar 
6 = harpsichord 
7 = organ 
8 = trumpet 
9 = xylophone 

Un = Volume(n=0·15) 
Xn = Filter on (n = 1), off (n = 0) 
Notes: A,B,C,D,E,F,G 
Elements: # .......... Sharp 

$ ......... . Flat 
W ......... ,Whole note 
H .......... Half nole 
a .......... Quarter note 
I ........... Eighlh note 
S .... , ..... Sixteenth note 
. ........... Dotted 
R .... , ..... Rest 
M .......... Wait for aU voices cur­

renlly playing to end 
current measure 

The PLAY statement gives you the power to select voice, octave and 
tune envelope (including ten predefined musical instrument enve· 
lopes), the volume and the notes you want to PLAY. All these controls 
are enclosed in quotes. 

All elements except Rand M precede the musical notes in a PLAY 
string. 

EXAMPLES: 

PLAY " Vl04TOU5XOCDEFGAB" Play the notes C,Q,E,F,G,A 
and B in voice 1, octave 4, 
tune envelope 0 (piano). at 
volume 5, with Ihe liIler 
off. 

277 BASIC 7.0 ENCYCLOPEDIA-Basie Commands and Statements 



POKE 

PRINT 

PLAY " V305T6U7X1#B$AW.CHOQEIF"Play the notes B·sharp, A­
flat, a whole dotted-C note, 
a half D-note, a quarter E­
note and an eighth F·nole. 

-Change the contents of a RAM memory location 

POKE address, value 

The POKE statement allows changing of any value in the Commo­
dore 128 RAM , and allows modification of many of the Commodore 
1281nput/Outpui registers. The keyword POKE is always followed by 
two parameters. The first is a location inside the Commodore 128 
memory. This can be a value from 0 to 65535. The second parameter 
is a value from a to 255, which is placed in the location, replacing 
any value that was there previously, The value of the memory loca­
tion determines the bit pattern of the memory location. The POKE 
occurs into the currently selected RAM bank. The POKE address 
depends on the BANK number. See BANK in this Encyclopedia for 
the appropriate BANK configurations. 

EXAMPLE: 

10 POKE 53280,1 Changes VIC border color 

NOTE: PEEK, a function related to POKE, which returns the contents 
of the specified memory location, is listed under FUNCTIONS. 

-Output to the text screen 

PRINT [print list] 

The PRINT statement is the major output statement in BASIC. While 
the PRINT statement is the first BASIC statement most people learn 
to use, there are many variations of this statement. The word PRINT 
can be followed by any of the following: 

Characters inside quotes (" Iext" ) 

Variable names (A, 8, A$. X$) 

Functions 

Punctuation marks 

(SIN(23). ABS(33» 

(; .) 

The characters inside quotes are often called literals because they 
are printed literally, exactly as they appear. Variable names have the 
value they contain (either a number or a string) printed. Functions 
also have their number values printed. 

278 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



PRINT # 

Punctuation marks are used to help format the data neatly on the 
screen. The comma separates printed output by 10 spaces, while 
the semicolon separates printed output by three spaces. Either 
punctuation mark can be used as the tast symbol in the statement. 
This results in the next PRINT statement acting as if it is continuing 
the previous PRINT statement. 

EXAMPLES: RESULTS 

10 PRtNT " HELLO" 

20 A$= "THERE":PRINT "HELLO ";AS 

30 A=4:B=2:?A+B 

40 J=41:PRINT J;PRINT J·1 

HELLO 

HELLO THERE 

6 

4140 

50 PRINT A;S;D = A + S:PRINT D;A·S 

See also POS, SPC, TAB and CHAR lunclions. 

4262 

-Output data to files 

PRINT# file number, print lIat 

There are a few differences between this statement and PRINT. Most 
importantly, the word PRINTS is followed by a number, which refers 
to the data file previously OPENed. The number is followed by a 
comma and a list of items to be output to the file. The comma and 
semicolon act in the same manner for spacing with printers as they 
do in the PRINT statement. Some devices may not work with TAB 
and SPC. 

EXAMPLE: 

10 OPEN 4,4 
20 PRINTH4,"HEllO THERE!",A$,8$ 

10 OPEN 2,8,2 
20 PRINT#2,A,SS,C,D 

Outputs the data "HEllO 
THERE" and the variables 
A$ and 8$ to the printer. 

Outputs the data variables 
A, 8$, C and 0 to the disk 
file number 2. 

NOTE: The PRINT# command is used by itself to close the channel 
to the printer before closing the file, as follows: 

10 OPEN 4,4 
3{) PRINT#4,"PRINT WORDS" 
40 PRINT,,4 
50 CLOSE 4 

279 BASIC 1.0 ENCYCLOPEDIA-Basic Commands and Statements 



PRINT USING -Output using format 

PRINT [#tllenumber] USING"format nst"; print list 

This statement defines the format of string and numeric items for 
printing to the text screen, printer or other device. The format is put 
in quotes. This is the format list. Then add a semicolon and a list of 
what is to be printed in the format for the print list. The list can be 
variables or the actual values to be printed. 

EXAMPLE: 

5 X = 32: Y = 100.23: AS = "CAT" 
10 PRINT USING "$/fUN ";13.25,X,Y 
20 PRINT USING "### )#";"CBM",AS 

When this is RUN, line 10 prints: 

$13.25 $32.00 $..... Five asterisks ( •• •• • ) are printed 
instead of a Y value because Y has five 
digits, and this condition does not con­
form to formal list (as explained below) 

line 20 prints this: 

CBM CAT Leaves three spaces before printing 
"CBM" as defined in format list. 

CHARACTER NUMERIC STRING 

Pound sign (H) X X 

Plus sign ( + ) X 

Minus sign (-) X 

Decimal Point (.) X 

Comma(.) X 

Dollar Sign ($) X 

Four Carets (flflflfI) X 

Equal Sign ( = ) X 

Greater Than Sign (») X 

The pound sign (#) reserves room for a single character in the output 
field. If the data item contains more characters than there are /I 
signs in the format field, the entire field is filled wi th asterisks (*): no 
characters are printed. 

280 BASIC 7.0 ENCYClOPEOIA-BasicCommands and Statement!> 



EXAMPLE: 

10 PRINT USING "####";X 

For these values of X, this format displays: 

A = 12.34 12 

A = 567.89 

A = 123456 

568 ..... 
For a STRING item, the sIring data is truncated al the bounds of the 
field. Only as many characters are printed as there are pound signs 
(N) in the format item. Truncation occurs on the right. 

The plus ( + ) and minus ( - ) signs can be used in either the first or 
lasl position of a format field, but not both. The plus sign is printed if 
the number is positive. The minus sign is printed if the number is 
negative. 

If a minus sign is used and the number is positive, a blank is printed 
in the character position indicated by the minus sign. 

If neither a plus nor a minus sign is used in the format field for a 
numeric data item, a minus sign is printed before the first digit or 
dollar symbol if the number is negative. No sign is printed if the num­
ber is positive. This means that one additional character, the minus 
sign, is printed if the number is negative. If there are too many char­
acters to fit into the field specified by the pound sign and plus/minus 
signs, then an overftow occurs and the field is filled with asterisks 
(.). 

A decimal poinl (.) symbol designales Ihe posilion of Ihe decimal 
point in the number. There can be only one decimal point in any for­
mal field. If a decimal point is not specified in the format field, the 
value is rounded to the nearest integer and printed wi thout decimal 
places. 

When a decimal point is specified, the number of digits preceding 
the decimal point (including the minus sign, if the value is negative) 
must not exceed the number of pound signs before the decimal 
point . If there are too many digits, an over flow occurs and the field is 
fi lled wilh asterisks (.). 

A comma (.) allows placing of commas in numeric fields. The posi· 
tion of the comma in the format list indicates where the commas 
appear in a printed number. Only commas within a number are 

281 BASIC 1.0 ENCYCLOPEDIA-Basic Commands and Statements 



printed. Unused commas to the left of the first digit appear as filler 
character. At least one pound sign must precede the first comma in 
a lield. 

If commas are specified in a field and the number is negative, then a 
minus sign is printed as the first character. even if the character posi­
tion is specified as a comma. 

EXAMPLES: 
FIELD EXPRESSION 

,U - .1 

NU 

11/11111 - 100.5 

NUN - WOO 

10 

RESULT 

-0.1 

1.0 

- 101 

10. 

$1 

COMMENT 

Leading zero added. 

Trailing zero added. 

Rounded to no decimal 
places. 

Overflow because four 
digits and a minus sign 
cannot fil in field. 

Decimal point added. 

Leading dollar sign. 

A dollar sign ($) symbol shows that a dollar sign will be printed in the 
number. If the dollar sign is to float (always be placed before the 
number), at least one pound sign must be specified before the dollar 
sign. If a dollar sign is specified without a leading pound sign, the 
dollar sign is printed in the position shown in the format field. If com· 
mas andlor a plus or minus sign are specified in a format field with a 
dollar sign, the program prints a comma or sign before the dollar 
sign. The up arrows or caret symbols (AA) are used to specify that 
the number is to be printed in E + format (scientific notation). A 
pound sign must be used in addition to the four carets to specify the 
field width. The carets can appear either before or after the pound 
sign in the format field. Four carets must be specified when anum· 
ber is to be printed in E format. If more than one but fewer than four 
carets are specified, a syntax error results. If more than four carets 
are specified, only the first fou r are used. The fifth caret is inter· 
preted as a no· text symbol. An equal sign (=) is used to center a 
string in a field . The field width is specified by the number of charac­
ters (pound sign and equal sign) in the format field. If the string con­
tains fewer characters than the field width, the string is centered in 
the field. If the string contains more characters that can be fit into 
the field, then the right-most characters are truncated and the string 
Ii lis the entire field. A greater than sign (») is used to right justify a 
string in a field. 

282 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Sialemenis 



PUDEF 

READ 

-Redefine symbols in PRINT USING statement 

PUDEF linn"n" 

Where "nnnn" is any combination 01 characters, up to four in all, 
PUDEF allows you to redefine anyof the following four symbols in 
the PRINT USING statement blanks, commas, decimal points and 
dollar signs. These four symbols can be changed into some other 
character by placing the new character in the correct position in the 
PUDEF control string. 

Position 1 is the filler character. The default is a blank. Place a new 
character here for another character to appear in place of blanks. 

Position 2 is the comma character. Default is a comma. 

Position 3 is the decimal point. Default is a decimal point. 

Position 4 is the dollar sign. Default is a dollar sign. 

EXAMPLES: 

10 PUDEF " . .. 

20 PUOEF " (" 

PAINTS' in the place of blanks, 

PRINTs ( in the place of commas. 

-Read data from DATA statements and input it into the computer 's 
memory (while the program is RUNning) 

READ variable list 

This statement inputs information from DATA statements and stores 
it in variables, where the data can be used by the RUNning program. 
The READ statement variable list may contain both strings and num­
bers, Be careful to avoid reading strings where the READ statement 
expects a number and vice versa. This produces a TYPE MISMATCH 
ERROR message. 

The data in the DATA statements are READ in sequential order. Each 
READ statement can read one or more data items. Every variable in 
the READ statement requires a data item. If one is not supplied, an 
OUT OF DATA ERROR occurs. 

In a program. you can READ the data and then re·read it by issuing 
the RESTORE statement. The RESTORE sets the sequential data 
pointer back to the beginning, where the data can be read again. See 
the RESTORE statement. 

283 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Slatements 



RECORD 

EXAMPLES: 

10 READ A, B, C 
20 DATA 3, 4, 5 

READ the first three numeric 
variables from the closest data 
statement. 

10 READ AS, BS, C$ READ the first three string 
20 DATA JOHN, PAUL, GEORGE string variables from the nearest 

data statement. 

10 READ A, BS, C 
20 DATA 1200, NANCY, 345 

-Position relative file pointers 

READ (and inpu t into the C128 
memory) a numeric variable, a 
string variable and another 
numeric variable. 

AECORDIt logical file number, record number (,byte 
number] 

This statement positions a relative file pointer to select any byte 
(character) of any record in the relative file. The logical file number 
can be in the range between 0 and 255. The record number can be 
in the range 0 through 65535. Byte number is in the range 1 through 
254. See your disk drive manual for details about relative files. 

When the record number value is set higher than the last record 
number in the file , the following occurs: 

For a write (PRINTIf) operation, additional records are created to 
expand the file to the desired record number. 

For a read (INPUTIf) operation, a null record is returned and a 
"RECORD NOT PRESENT ERROR occurs". 

EXAMPLES: 

10 OPEN 2,8,2"CUSTOMER,R,W" 
20 RECORD#2,10,1 
30 PRINT#2,AS 
40 CLOSE 2 

This example opens an existing relative file called "CUSTOMER" as 
file number 2 in line 10. line 20 positions the relative file pOinter at 
the first byte in record number 10. Line 30 actually writes the data, 
A$, to file number 2. 

284 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



REM 

RENAME 

The RECORD command accepts variables for its parameters. It is 
often convienent to place a RECORD command within a FOR. 
NEXT or DO loop. Also see DOPEN and OPEN. 

-Comments or remarks about the operation of a program line 

REM message 

The REMark statement is a note to whoever is reading a listing of the 
program. REM may explain a section of the program. give informa­
tion about the author, etc. REM statements do not affect the opera­
tion of the program, except to add length to it (and therefore use 
more memory). Nothing 10 the right of the keyword REM is inter­
preted by the computer as an executable instruction. Therefore, no 
other executable statement can follow a REM on the same line. 

EXAMPLE: 

10 NEXT X:REM This line increments X. 

-Change the name of a file on disk 

RENAME "old filename" TO "new filename" (,Ddrlve 
number] (,Udevice number] 

This command is used to rename a file on a disk, from the old 
filename to the new filename. The disk drive does not RENAME a file 
if it is OPEN. 

EXAMPLES: 

RENAME "TEST" TO "FINAlTEST",OO Change the name of the 
fi le "TEST" to " FINAL 
TEST". 

RENAME (A$) to (B$),DO,U9 Change the f ilename 
specified in A$ to the 
filename specified in B$ 
on drive 0, device 
number 9. Remember, 
whenever a variable 
name is used as a 
filename, it must be 
enclosed in parentheses. 

285 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Sl atements 



RENUMBER 

RESTORE 

-Renumber lines of a BASIC program 

RENUMBER [new starting line numberl,lncrement] [,old 
starting line number) 

The new starting line is the number of the first line in the program 
after renumbering; the default value is 10. The increment is the inter­
val between line numbers, (i.e., 10, 20, 30, etc.): the increment 
default value is also 10. The old starting line number IS the first line 
number before you renumber the program. This allows renumbering 
of a select portion of the program. The default in this case is the first 
line of the program. This command can only be executed from direct 
mode. 

A "LINE NUMBER NOT FOUND ERROR" occurs if any reference to 
line number that doesn't exist is encountered. An "OUT OF MEM­
ORY" occurs if RENUMBERing expands the program beyond its 
limits. Either error leaves the program unharmed. 

EXAMPLES: 

RENUMBER 

RENUMBER 20, 20, 1 

RENUMBER, • 65 

Renumbers the program starting at 
10, and increments each additional 
line by 10. 

Starting at line 1, renumbers the 
program. Line 1 becomes line 20, 
and other tines are numbered in 
Increments of 20. 

Startmg at line 65, renumbers In 
increments of 10. line 65 becomes 
line 10. If you omit a parameter, you 
must stili enter a comma as a 
placeholder. 

-Reset READ pointer so the DATA can be reREAD 

RESTORE [line #1 
When executed in a program, the pointer to the item in a DATA state· 
ment that is to be read next is reset to the first item in the DATA state· 
ment. This provides the capability to reREAD the data. If a line num· 
ber follows the RESTORE statement, the READ pointer is set to the 
first data item in the specified program line. Otherwise the pointer is 
reset 10 the beginning of the BASIC program. 

286 BASIC 7.0 ENCVCLOPEDIA-SCISic CornmClnds iind SICIlemenlS 

-



-
RESUME 

EXAMPLES: 

10 FOR I = 1 TO 3 
20 READ X 
30 TOTAL = X + TOTAL 
40 NEXT 
50 RESTORE 
60 GOTO 10 
70 DATA 10,20,30 

10 READ A,B,C 
20 DATA 100,500,750 
30 READ X,Y,Z 
40 DATA 36,24,38 
50 RESTORE 40 
60 READ S,P,Q 

This example READs the data 
in line 70 and stores it in 
numeric variable X. It adds 
the tolal of all the numeric 
data items. Once all the data 
has been READ, three cycles through 
the loop. the READ pointer is 
RESTOREd to the begmnlng of the 
program and II reI urns to line 10 and 
performs repetitively. 

This example RESTORES the DATA 
pointer to the beginning data 
item In line 40. When hne 60 
is executed, it will READ the 
DATA 36.24.38 from line 40, 
since you don't need to AEAD line 20's 
DATA again. 

-Define where the program will continue (RESUME) after an error 
has been trapped 

RESUME [line # I NEXT) 

This statement is used to restart program execution after TRAPping 
an error. With no parameters, RESUME attempts to re·execute the 
line in which the error occurred. RESUME NEXT resumes execution 
at the statement immediately following the one containing the error: 
RESUME followed by a line number will GOTO the specific line and 
resume execution from that line number. RESUME can only be used 
in program mode. 

EXAMPLE: 

10 INPUT " CENTER A NUMBER";A 
15 TRAP 100: B = l00fA 
40 PRINT" THE RESULT =";B: PRINT" THE END" 
50 INPUT " DO YOU WANT TO RUN IT AGAIN (YfN)";Z$:IF 
Z$ = "Y" THEN 10 
60 STOP 
100 INPUT" ENTER ANOTHER NUMBER (NOT ZERO)";A 
110 RESUME 15 

This example traps a "division by zero error" in line 15 if 0 is entered 
in line 10. If zero is entered, the program goes to line tOO, where you 
are asked to input another number besides O. Line 11 0 returns to line 

287 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



RETURN 

RUN 

15 to complete the calculation. Line 50 asks if you want to repeat the 
program again. If you do, press the Y key. 

-Return from subroutine 

RETURN 
This statement is always paired with the GOSUB statement. When 
the program encounters a RETURN statement, it goes to the state­
ment immediately following the last GOSUB command executed. If 
no GOSUB was previously issued, then a RETURN WITHOUT 
GOSUB ERROR message is displayed and the program stops. All 
subroutines end with a RETURN statement. 

EXAMPLE: 

10 PRINT " ENTER SUBROUTINE" 
20 GOSUB 100 
30 PRINT " END OF SUBROUTINE" 

90 STOP 
100 PRINT " SUBROUTINE 1" 
110 RETURN 

This example calls the subroutine at tine 100 which prints the mes­
sage "SUBROUTINE 1" and RETURNs 10 line 3D, the resl 01 the 
program. 

-Execute BASIC program 

1) RUN [line #1 
2) RUN "filename' I [,Ddrlve numberl,Udevlce number] 

Once a program has been typed into memory or LOADed, the RUN 
command executes it. RUN clears all variables in the program 
before starting program execution. If there is a number following the 
RUN command, execution starts at that line number. If there is a 
filename following the RUN command, the named file is loaded from 
the disk drive and RUN, with no further action required of the user. 
RUN may be used within a program. The default drive number is 0 
and default device number is 8. 

EXAMPLES: 

RUN Starts execution from the beginning of the 
program. 

288 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Slalemen1!1 



SAVE 

RUN 100 

RUN" PRG1 " 

RUN(A$) 

Starts program execution at line 100. 

DLOADS " PRG1 " from disk drive 8, and runs 
it from the starting line number. 

DLOADs the program named in the variable 
A$. 

-Store the program in memory to disk or tape 

SAVE [Ufllename".,device number)[,EOT flag] 

This command stores a program currently in memory onto a cas­
sette tape or disk. If the word SAVE is typed alone followed by 
RETURN , the Commodore 128 assumes that the program is to be 
stored on cassette tape. 11 has no way of checking if there is already 
a program on the tape in that location, so make sure you do not 
record over valuable information on your tape. If SAVE is followed by 
a filename in quotes or a string variable name, the Commodore 128 
gives the program that name, so it may be located easily and 
retrieved in the future . If a device number is specified for the SAVE, 
follow the name with a comma (after the quotes) and a number or 
numeric variable. Device number 1 is the tape drive, and number 8 is 
the disk drive. After the device number on a tape command, there 
can be a comma and a second number, which is ei ther 0 or 1. If the 
second number is 1, the Commodore 128 puts an END-OF·TAPE 
marker (EDT flag) after the program (tape output only). 11, in trying to 
LOAD a program, the Commodore 128 finds one of these markers, 
rather than the program to be LOADed, a FILE NOT FOUND ERROR 
is reported. 

EXAMPLES: 

SAVE 
SAVE " HELLO" 

Stores program on tape, without a name. 
Stores a program on tape, under the name 
HELLO. 

SAVE AS,S Stores on disk, with the name stored in 
variable A$. 

SAVE " HELLO", S Stores on disk, with name HELLO {equivalent 
to DSAVE "HELLO} 

SAVE " HELLO", 1, 1 Stores on tape, with name HELLO, and 
places an END·OF TAPE marker after the 
program. 

289 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



SCALE 

SCNCLR 

-Alter scaling in graphics mode 

SCALE n [,xmax,ymall] 

where: 

n = 1 (on) or a (off) 

In Standard bit map mode 320 ( = X max ( 32767 
(default ;;;; 1023) 
200 ( = Y max ( 32767 
(default; 1023) 

In Multicolor mode 160 (; X max ( 32767 
(default = 511) 
160 < = Y max < 32767 
(default ;; 511) 

This statement changes the scaling of the bit maps in multicolor and 
high-resolution modes. Entering: 

SCALE 1 

turns scaling on. Coordinates may then be scaled from 0 to 32767 in 
both X and Y, rather than the normal scale values, which are: 

multicolor mode . .... . . . . . . . . . . . X = 0 to 159 Y = 0 to 199 
bit map mode •.• . . . .•••.. . ..... X ;;;; a to 319 Y = 0 to 199 

EXAMPLES: 

10 GRAPHIC 1,1 Enter standard bit 
20 SCALE 1:CIRCLE 1,180,100,100,100 map. turn scaling on to 

default size (1023.1023) 
and draw a circle. 

10 GRAPHIC 1,3 
20 SCALE 1,1000,5000 
30 CIRCLE 1,180,100,100,100 

-Clear screen 

SCNCLR mode number 

The modes are as follows: 

Mode Number 
o 
1 
2 
3 

Mode 
40 column (VIC) text 
bll map 
split screen bit map 
multicolor bI\ map 

Enter multlcolor mode. 
turn scaling on to size 
(1000,5000) and draw a 
circle. 

290 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



SCRATCH 

SLEEP 

SLOW 

4 split screen multicolor bit map 
5 80 column (8563) lexl 

This statement with no argument clears the graphic screen, if it is 
present otherwise the current text screen is cleared. 

EXAMPLES: 

SCNCLR 5 Clears 80 column text screen. 
SCNCLR 1 Clears the (VIC) bit map screen. 
SCNCLR 4 Clears the (VIC) split screen mullicolor bit map. 

-Delete a file from the disk directory 

SCRATCH "fllename" [,Ddrlve numberl,Udevlce number] 

This command deletes a file from the disk directory. As a precaution, 
Ihe syslem asks "ARE YOU SURE?" (in direcl mode only) before Ihe 
Commodore 128 completes the operation. Type a Y to perform the 
SCRATCH or press any other key to cancellhe operation. Use this 
command to erase unwanted files, and to create more space on the 
disk . The filename may contain template, or wildcards (?," etc.). The 
default drive number is 0 and default device number is 8. 

EXAMPLE: 

SCRATCH " MY BACK" , 00 

This erases the file MY BACK from Ihe disk in drive O. 

-Delay program lor a specific period of time 

SLEEPN 

where N is seconds O( N ( 65535 

-Return the Commodore 128 to 1 Mhz operation 

SLOW 

The Commodore 128 is capable of running the 8502 microprocessor 
at a speed of 1 or 2 megahertz (Mhz). 

The SLOW command slows down Ihe microprocessor to 1 Mega· 
hertz from 2 Megahertz. The FAST command sets the Commodore 
al2 Mhz. The Commodore 128 can process and access disk sub· 
stantially faster at 2 Mhz than operating at 1 Mhz. 

291 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



SOUND -Output sound effects and musical notes 

SOUND v,f,d[,dir.,ml,sl,w.,p] 

where: v = voice (1..3) 
f '; frequency value (0 .. 65535) 
d = duration (0 .. 32767) 
dir = step direction (O(up) .1(down) or 2(oscllIate)) default = 0 
m = minimum frequency (if sweep is used) (0 .. 65535) 

default = 0 
S = Slep value for sweep (0 .. 32767) default = 0 
w = waveform (0= trlangle.1 = sawtooth.2 = variable, 

3 = noise) default = 2 
P pulse width (0 .. 4095) default = 2048 

The SOUND command is a fast and easy way to create sound 
effects and musical lanes. The three required parameters v,f and d 
select the voice, frequency and duration of the sound. The duration 
is in uni ts called jiffies. Sixty jiffies equals 1 second. 

The SOUND command can sweep through a series of frequencies 
which allows sound effects to pass Ihrough a range of noles. Specify 
the direcilon of the sweep with the DIR parameter. Set the minimum 
frequency of the sweep with M and the step value of the sweep with 
S. Select the appropriate waveform with Wand specify P as the 
width of the variable pulse waveform if selected in W. 

EXAMPLES: 

SOUND 1,40960,60 Playa SOUND atlrequency 40960 
In vOice 1 for 1 second. 

SOUND 2,20000,50,0,2000,100 Output a sound by sweeping 
through frequencies starling at 
2()()() and incrementing upward in 
uMs of 100. Each frequency IS 

played for 50 JIffies 
SOU N 0 3,5000,90,2,3000,500,1 ThiS example outputs a range of 

sounds starting at a minimum 
frequency of 3000. through 5000. In 

increments of 500. The dlrechon of 
the sweep IS back and forth 
(oscillating). The selected waveform 
is sawtooth and Ihe vOice selected 
IS 3. 

292 BASIC T.O ENCYCLOPEDIA-Basic Commands and Statements 

- " 



SPRCOLOR 

SPRDEF 

-Set multi color 1 and/or multicolor 2 colors for all sprites 

SPRCOLOR [smcr-1 X,smcr.2) 

where: 

smcr-1 Sets multicolor 1 for all sprites. 
smcr·2 Sets multicolor 2 for all sprites. 

Either of these parameters may be any color from 1 through 16. 

EXAMPLES: 

SPRCOLOR 3,7 Sets sprite multicolor , to red and multicolor 2 to 
blue. 

SPRCOLQR 1,2 Sets sprite multicolor 1 to black and multicolor 2 to 
white. 

-Enter the SPRite DEFinition mode to create and edit sprite 
images. 

SPRDEF 

The SPRDEF command defines sprites interactively. 

Entering the SPRDEF command, displays a sprite work area on the 
screen which is 24 characters wide by 21 characters tall. Each char­
acter position in the grid corresponds to a sprite pixel in the sprite 
displayed to the right of the work area. Here is a summary of the 
SPRite DEFinition mode operations and the keys that perform them: 

User Input 
1-8 
A 

CRSR keys 
RETURN key 
RETURN key 

HOME key 

CLR key 
1-4 
CTRL key, 1-8 
Commodore key, 1·8 
STOP key 
SHIFT RETURN 

Description 
Selects a sprite number. 
Turns on and off automatic cursor 
movement. 
Moves cursor. 
Moves cursor to start of next line. 
Exits sprite designer mode at the SPRITE 
NUMBER? prompt only. 
Moves cursor to top left corner of sprite 
work area. 
Erases entire grid. 
Selects COIOf source. 
Selects sprite foreground color (1·8). 
Selects sprite foreground color (9,16). 
Cancels changes and returns to prompt. 
Saves sprite and returns to SPRITE 
NUMBER? prompt. 

293 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



SPRITE 

x 
y 
M 
C 

Expands sprite In X (horizontal) direction. 
Expands spnte In Y (vertical) direction. 
Multlcolor sprite. 
Copies sprite data from one sprite to 
another. 

-Turn on and off, color, expand and set screen priorities for a sprite 

SPRITE ( number) [,on/offI,fgndl,priorltyl,x'exp] 
[,y·expl,mode] 

The SPRITE statement controls most of the characteristics of a 
sprite. 

Parameter Description 
number 
on/off 
foreground 
priority 

Sprite number (1 -8) 
Turn sprite on (1) or elf {OJ 
Sprite foreground color (1·16) 
Priority is 0 if sprites appear in fronl of objects on 
the screen. Priority is 1 il sprites appear in back of 
objects on the screen. 

x-exp HOrizontal EXPanSion on (1l or off (0) 
y-exp Vertical EXPansion on (1) or off (0) 
mode Select standard sprite (0) or multicolor sprite (1) 

Unspecified parameters in subsequent sprite statements take on the 
characters of the previous SPRITE statement. You may check the 
characteristics of a SPRITE with the RSPRITE function. 

EXAMPLES: 

SPRITE 1,1,3 Turn on sprite number 1 and color it red. 
SPRITE 2,1,7,1,1,1 Turn on sprite number 2, color it blue 

make it pass behind objects on the 
screen and expand it In the vertical and 
horizontal directions. 

SPRITE 6,1,1,0,0,1,1 Turn on SPRITE number 6, color it black. 
The rlrst a tells the computer to display 
the sprites in front of objects on the 
screen. The second 0 and the 1 
following len the C128 to expand the 
sprite verlicaly only. The last 1 specifies 
multicolor mode. Use the SPRCOLOR 
command to select the sprite's 
multicolor. 

294 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Sialements 



SPRSAV 

SSHAPEIOSHAPE 

-Store sprite data from a text string variable into a sprite storage 
area or vice versa 

SPRSAV (origin ) , ( destination ) 

This command transfers a sprite image from a string variable to a 
sprite storage area. It can also transfer the data from the sprite stor­
age area into a string variable. Either the origin or the destination 
can be a sprite number or a string variable but they both cannot be 
string variables. 1f you are moving a string into a sprite, only the first 
63 bytes of data are used. The rest are ignored since a sprite can 
only hold 63 data bytes. 

EXAMPLES: 

SPRSAV 1.AS Transfers the image pattern from spri te 1 to the 
string named A$. 

SPRSAV 8S,2 Transfers the data from sIring variable B$ into 
sprite 2. 

SPRSAV 2,3 Transfers the data from sprite 2 to sprite 3. 

-Save/retrieve shapes tolfrom string variables 

SSHAPE and GSHAPE are used to save and load rectangular areas 
of multicolor or bit mapped screens to/from BASIC string variables. 
The command to save an area of the screen into a string variable is: 

SSHAPE string variable, Xi, Y 1 [,X2, Y2] 

where: 

string variable . . . • Slring name to save data in 
X1 ,Y1 . . . . . . . . . .. Corner coordinate (0,0 through 319,199) 

(scaledl 
X2,Y2 ....... . . .. Corner coordinate oPPOsite (Xl,Yl) 

(default is the PC) 

Because BASIC limits strings to 255 characters, the size of the area 
that can be saved is limited. The string size required can be calcu· 
lated using one of the following (unsealed) formulas: 

L(mcm)= INT((ABS(a1-a2) + 1)/4 + .99) ' (ABS(b1-b21+11+4 

L(h-r)=INT((ABS(a1-a2) + 1)/8 + .99) ' (ABS(bl - b2)+t)+4 

The command to retrieve (load) the data from a string variable and 
display it on specified screen coordinates is: 

GSHAPE string variabie [X, VI [,model 

295 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



where: 

string . . . ... . ... . Contains shape to be drawn 
X, y . . . ... ... . ... Top left coordinate (0.0 through 319.199) telling 

where to draw the shape (scaled-the default is 
the pixel cursor) 

mode . • . ... . .. .. Replacement mode: 
0; place shape as is (default) 
1: invert shape 
2: OR shape with area 
3: AND shape with area 
4: XOR shape with area 

The replacement mode allows you to change the data in the string 
variable so you can invert it, perform a logical OR, exlusive OR or 
AND operation on the image. The X and Y values can place the pixel 
cursor at absolute coordinates such as (100, 1 00) or at coordinates 
relative to the previous position ( + /- X and + /- Y) of the pixel cu r­
sor such as (+ 20, -10). The coordinate of one axis (X or Y) can be 
relative and the other can be absolute. Here are the posible combi­
nations of ways to specify the X and Y coordinates. 

x,y 
+I-x,y 
x, +I-y 
+I-x.+/-y 

absolute x, absolute y 
relative x, absolute y 
absolute x, relative y 
relative x. relative y 

AlSO see the LOCATE command for information on the pixel cursor. 

EXAMPLES: 

SSHAPE AS,10,10 Saves a rectangular area from the 
coordinates 10.10 to the location of the 
pixel cursor, into string variable A$. 

SSHAPE 8S,2O,30,47,51 Saves a rectangular area from top left 
coordinate (20,30) through bottom right 
coordinate (47.51) into string variable 
S$. 

SSHAPE 0$, + 10. + 10 Saves a rectangular area 10 pixels to 
the right and 10 pixels down from the 
current position of the pixel cursor. 

GSHAPE AS,12O,20 Retrieves shape contained in string 
variable A$ and displays it at lop left 
coordinate (120,20). 

296 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



STASH 

STOP 

SWAP 

SYS 

~. , 

297 

GSHAPE 8$,30,30,1 Retrieves shape contained in string 
variable B$ and displays it at top left 
coordinate 30.30, The shape is inverted 
due to the replacement mode being 
selected by the 1. 

GSHAPE es, + 20, + 30 Retrieve shape from string variable C$ 
and displays it 20 pixels to the right and 
30 pixels down from the current position 
of the pixel cursor. 

NOTE: Beware using modes 1-4 with multicolor shapes. You may 
obtain unpredictable results. 

-Move contents of host memory to expansion RAM 

STASH IIbytes, Intsa, expb, expsa 

Refer to FETCH command for description of parameters. 

-Halt program execution 

STOP 

This statement halts the program. A message, BREAK IN LINE XXX, 
occurs (only in program mode), where XXX is the line number con­
taining the STOP command. The program can be restarted at the 
statement following STOP if the CONT command is used immedi· 
ately, without any editing occurring in the listing. The STOP state· 
ment is often used while debugging a program. 

-Swap contents of host RAM with contents of expansion RAM 

SWAP #bytes, IntsB, ex.pb, expsa 

Refer to FETCH command for description of parameters. 

-Call and execute a machine language subroutine at the specified 
address 

SYS address [,aJ [,xJ [,vJ [,sJ 

This statement performs a call to a subroutine at a given address in a 
memory configuration set up according to the BANK command. 
Optionally, arguments a,x,y and s are loaded into the accumulator, x, 
y and status registers, respectively before the subroutine is called. 

BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



TEMPO 

TRAP 

The address range is 0 to 65535. The program begins executing the 
machine-language program starting at that memory location. Also 
see the BANK command. 

EXAMPLES: 

SYS 40960 Calls and executes the machine-language routine at 
location 40960. 

SYS 8192,0 Calls and executes the machine-language routine at 
location 8192 and load zero into the accumulator. 

-Define the speed of the song being played 

TEMPOn 

where n is a relative duration between (0 and 255) 

The actual duration for a whole note is determined by using the for­
mula given below: 

whole note duration = 19.22/n seconds 

The default value is 8, and note duration increases with n. 

EXAMPLES: 

TEMPO 16 
TEMPO 1 
TEMPO 250 

Defines the Tempo al 16. 
Defines the TEMPO at the slowest speed. 
Defines the TEMPO at 250. 

-Detect and correct program errors while a BASIC program is 
RUNning 

TRAP [line #) 

When turned on, TRAP intercepts most error conditions (excluding 
DOS error messages but including the STOP KEY) except an 
"UNDEF'D STATEMENT ERROR." In the event of any execution 
error, the error flag is set and execution is transferred to the line 
number specified in the TRAP statement. The line number in which 
the error occurred can be found by using the system variable EL. 
The specific error condition is contained in system variable ER. The 
string function ERR$ (ER) gives the error message corresponding to 
any error condition. 

The RESUME statement can be used to resume program execution. 
TRAP with no line number turns off error trapping. An error in a TRAP 
routine cannot be trapped. Also see system variables ST, DS and 
DS$. 

298 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



TROFF 

TROH 

VERIFY 

EXAMPLES: 

100 TRAP 1000 
1000 ?ERR$ (ER);EL 

1010 RESUME 

If an error occurs, go to line 1000. 
Print the error message, and the efror 
number. 
Resume with program execution. 

-Turn all error TRACing mode 

TROFF 
This statement turns off trace mode. 

-Turn on error TRACing mode 

TROH 
TAON is used in program debugging. This statement begins trace 
mode. When you RUN the program, the line numbers of the program 
appear in brackets before any action for that line occurs. 

-Verify program in memory against one saved to disk or tape 

VERIFY utllename 'l [,device number] [,relocate flag] 

This command causes the Commodore 128 to check the program 
on lape or disk against the one in memory, to determine if the pro­
gram is really SAVEd. This command is also very useful for position­
ing a tape so that the Commodore 128 writes after the last program 
on the tape. It will do so, and inform the user that the programs don't 
match. The tape is then positioned properly, and the next program 
can be stored without fear of erasing the old one. 

VERIFY, with no arguments after the command, causes the Commo­
dore 128 to check the next program on tape, regardless of its name, 
against the program now in memory. VERIFY, followed by a program 
name in quotes or a string variable in parentheses, searches the 
tape for that program and then checks it against the program in 
memory when found. VERIFY, followed by a name, a comma and a 
number, checks the program on the device with thai number (1 for 
tape, 8 for disk). The relocate flag is the same as in the LOAD com­
mand. It verifies the program from the memory location from which 
it was SAVEd. 

299 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and ShUemenls 



VOL 

WAIT 

EXAMPLES: 

VERIFY 
VERIFY " HELLO" 

VERIFY "HELLO", 8,1 

Checks the next program on the tape. 
Searches for HELLO on tape, checks it 
against memory. 
Searches for HELLO on disk, then checks 
it against memory. 

NOTE: If a graphic area is reallocated for use after a SAVE. VERIFY 
and DVERIFY will report an error. Technically this IS correct. BASIC 
text in this case has been moved from Its original (saved) location 
to another address range. Hence, VERIFY, which performs by1e·!o· 
byte comparisons. will fal l. even though the program is valid. 

-Define Qutpullevel of sound 

VOL volume level 

This statement sets the volume for SOUND and PLAY statements. 
VOLUME level can be set from a to 15, where 15 is the maximum 
volume, and 0 is off. VOL affects all voices. 

EXAMPLES: 

VOL 0 Sets volume to its lowest level. 

VOL 15 Sets volume lor SOUND and PLAY statements to Its highest 
output. 

-Pause program execullon unti l a data condition IS satisfied 

WAIT ( Location ) , ( mask·1 ) [,mask·2 )] 

The WAIT statement causes program execution to be suspended 
until a given memory address recognizes a specified bit pattern or 
value. In other words, WAIT can be used to hall the program until 
some external event has occurred. This is done by monitoring the 
status of bits in the InputfOutput registers. The data items used with 
the WAIT can be any values. For most programmers, this statement 
should never be used. II causes the program to halt until a specific 
memory location 's bits change in a specific way. This is used for 
cer tain 1/0 operations and almost nothing else. The WAIT statement 
takes the value in the memory location and performs a logical AND 
operation with the value in mask-1 . If mask-2 is specified, the result 
of the first operation is exclusively ORed wi th mask·2. In other words, 
mask·1 "filters out" any bits not to be tested. Where the bit is 0 in 
mask-1, the corresponding bit in Ihe result will always be O. The 
mask-2 value flips any bits, so that an off condition can be tested for 

300 BASIC 7.0 ENCYCLOPEOtA- Basic COmmands and Statements 



WIDTH 

WINDOW 

as well as an on condition. Any bits being tested for a 0 should have a 
1 in the corresponding position in mask·2. If corresponding bits of 
the (mask-1 ) and (mask-2) operands differ, the exclusive-OR opera­
tion gives a bit result of , . If the corresponding bits get the same 
result the bit is O. It is possible 10 enter an infinite pause with the 
WAIT statement, in which case the RUN/STOP and RESTORE keys 
can be used to recover. WAIT may require a BANK command if the 
memory you wish to access is not in the currently selected BANK. 

The first example below WAITs until a key is pressed on the tape unit 
10 continue with the program. The second example will WAIT until a 
sprite collides with the screen background. 

EXAMPLES: 

WAIT I , 32, 32 
WAIT 53273, 6, 6 
WAIT 36868, 144, 16 

(144 and 16 are binary masks. 144 = 10010000 in binary and 16 = 
10000 in binary.) 

-Set the width of drawn lines 

WIDTH n 

This command sets the width of lines drawn using BASIC's graphic 
commands to either single or double width. Giving n a value of 1 
defines a single width line; a value of 2 defines a double width line. 

EXAMPLES: 

WIDTH 1 Set single width lor graphic commands 
WIOTH 2 Set double width lor drawn lines 

-Defines a screen window 

WINDOW top left col, top left row,bot right col, bot right 
row[,clear] 

This command defines a logical window wlthin the 40 or 80 column 
text screen. The coordinates must be in the range 0·39/79 for column 
values and 0-24 for row values screen. The clear flag. if provided (1). 
causes a screen-clear to be performed (but only within the limi ts of 
the newly described window). 

301 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



EXAMPLES: 

WINDOW 5,5,35,20 Defines a window with top left corner 
coordinate as 5,5 and bottom right corner 
coordinale as 35,20. 

WINDOW 10,2,33,24,1 Defines a window with upper left corner 
coordinate (10,2) and lower right corner 
coordinate (33.24). Also clears the portIOn of 
the screen with the window as specified by 
the 1. 

302 BASIC 7.0 ENCYCLOPEDIA-Basic Commands and Statements 



SECTION 18 
Basic Functions 

303 BASIC 7.0 ENCYCLOPEDIA-Basic Functions 





a •• lc Function. 

ABS 

ASC 

ATN 

The format of the function description is: 

FUNCTION (argument) 

where the argument can be a numeric value, variable or string. 

Each function description is followed by an EXAMPLE. The lines 
appearing in bold face in the examples are the functions you type in. 
The line without bold is the computer's response. 

-Return absolute value 

ABS(X) 

The absolute value function returns the positive value of the argu· 
ment X. 

EXAMPLE: 

PRINT ASS (7" ( - 5) ) 

35 

-Return CBM ASCII code for character 

ASC(XS) 

This function returns the ASCII code of the first character of X$. You 
no longer have to append CHR$(0) to a null string. ILLEGAL QUAN­
TITY ERROR is no longer issued. 

EXAMPLE: 

X$ = "C1 28":PRINT X$ 

65 

-Return angle whose tangent is X radians 

ATN (X) 

This function returns the angle whose tangent is X, measured in radio 
ans. 

EXAMPLE: 

PRINT ATN (3) 

1.24904577 

305 BASIC 7.0 ENCYCLOPEDIA-Basic Functions 



BUMP 

CHRS 

cos 

-Return sprite collision information 

BUMP(NI 

To determine which sprites have collided since the last check. use 
the BUMP function. BUMP(l) records which sprites have collided 
with each other and BUMP(2) records which sprites have collided 
with other objects on the screen. COLLISION need not be active to 
use BUMR The bit positions (0-7) in the BUMP value correspond to 
sprites 1 through 8 respectively. BUMP(n) IS reset to zero after each 
call. 

The value returned by BUMP is the result of two raised to the power 
of the bit position. For example, if BUMP returned a value of 16. 
sprite 4 was involved in a collision since 2 raised to the fourth power 
equals 16. 

EXAMPLES: 

PRINT BUMP (1) Indicates that sprite 2 and 3 have collided. 
12 
PRINT BUMP (2) Indicates thai sprite 5 has collided with an object 

on the screen. 
32 

-Return ASCII character for specified CBM ASCII code 

CHRS(X) 

This IS the opposite of ASC and returns the string character whose 
CBM ASCII code is X. Refer to Appendix E for a table of CHR$ codes. 

EXAMPLES: 

PRINT CHRS (65) Prints the A character. 
A 
PRINT CHRS (147) Clears the text screen. 

-Return cosine for angle of X radians 

COS(XI 

This function returns the value of the cosine of X, where X is an angle 
measured in radians. 

EXAMPLE: 

PRINT COS (. 13) 
.5 

306 BASIC 7.0 ENCYCLOPEDIA-Bas ie Funetions 



DEC 

ERRS 

EXP 

FNxx 

-Return decimal value of hexadecimal number string 

DEC (hexldeclmalostrlng) 

This function returns the decimal value of hexadecimal-string. 

EXAMPLE: 

PRINT DEC ("D02O") 
53280 

-Return the string describing an error condition 

ERRS(N) 

This function returns a siring describing an error condition. Also see 
system variables EL and ER and Appendix A for a list of BASIC error 
messages. 

EXAMPLE: 

PRINT ERR$(ER) 
ILLEGAL QUANTITY ERRQR 

-Return value of an approximation of e (2.7182813) raised to the X 
power 

EXP(l() 

This function returns a value of e (2.7182813) raised to the power of 
X. 

EXAMPLE: 

PRINT EXP(1) 
2.7182813 

-Return value from user defined function 

FNxx(x) 

This function returns the value from the user-defined function xx 
created in a DEF FNxx statement. 

307 BASIC 7.0 ENCYCLOPEDIA-Basic Functions 



FRE 

HEX$ 

INSTR 

EXAMPLE: 

10 DEF FNAA(X) = (X·32)"519 
20 INPUT X 
30 PRINT FNAA(X) 
RUN 
? 40 (? is input prompt) 
4,44444445 

-Return number of available bytes in memory 

FRE (X) 

where X is the bank number. X = 0 for BASIC program storage and 
X = 1 to check for available BASIC variable storage. 

EXAMPLES: 

PRINT FRE (0) Returns the number of free bytes for BASIC 
48893 programs. 
PRINT FRE (1) Returns the number 01 free bytes for BASIC 
64256 variable storage. 

-Return hexadecimal number string from decimal number 

HEXS(X) 

This function returns a four-character string containing the hexadeci­
mal representation of value X (0 ( = X ( 65535). The decimal coun­
terpart of this function is DEC. 

EXAMPLE: 

PRINT HEXS(53280) 
D020 

- Return position of string 1 in string 2 

INSTR (string 1, string 2 [,starting position)) 

The I NSTR function searches for the first occurrence of string 2 
within string 1, and returns the position within the string where the 
match is found. The optional parameter for STARTING POSITION 
establishes the position in string 1 where the search begins. The 
STARTING POSITION musl be in Ihe range 11hrough 255. If no 
malch is found or, if Ihe STARTING POSITION is greater than the 
length of string 1 or if string 1 is null , INSTR returns the value O. If 

308 BASIC 7.0 ENCYCLOPEDIA-Basic FunctIons 



INT 

JOY 

string 2 is null, INSTR returns the value of the STARTING POSITION 
or the value 1. 

EXAMPLE: 

PRINT INSTR ("COMMODORE 128","128" ) , , 

-Return integer form (truncated) of a floating point value 

INTIX) 

This function returns the integer value of the expression. If the 
expression is positive. the fractional pari is left out. If the expression 
is negative, any fraction causes the nexllower integer to be 
returned. 

EXAMPLES: 

PRINT INT(3.14) 
3 

PRINT tNT(-3.14) 
-4 

-Return position of Joystick and the status of the fire button 

JOY(N) 

when N equals: 

1 JOY returns position of joystick 1 
2 JOY returns position 01 joystick 2. 

Any value of 128 or more means thai the fire button is also pressed. 
To find the JOY value, add the direction value of the joystick plus 128. 
if the fire button is pressed. The direction is indicated as follows: 

1 
8 2 

7 o 3 
6 4 

5 

EXAMPLES: 

JOY (2) = 135 
Joystick 2 fires to the left. 

IF (JOY (1) AND 128) = 128 THEN PRINT " FIRE". 
Determines whether the lire bulton is pressed 

309 BASIC 7.0 ENCYCLOPEDIA-Basic Functions 



LEFTS 

LEN 

LOG 

MIDS 

-Return the leftmost characters of string 

LEFTS (strlng,lnteger) 

This function returns a string comprised of the number of leftmost 
characters of the string determined by the specified integer. The 
integer argument must be in the range 0 to 255. If the integer is 
greater than the length of the string, the entire string is returned. If 
an integer value of zero is used, then a null string (of zero length) is 
returned. 

EXAMPLE: 

PRINT LEFTS (" COMMODORE",5) 
COMMa 

-Return the length of a string 

LEN (string) 

This function returns the number of characters in the string expres· 
sion. Non-printed characters and blanks are included. 

EXAMPLE: 

PRINT LEN (" COMMODORE1 2S'1 
12 

-Return natural log of X 

LOG (X) 

This function returns the natural log of X. The natural log is log to the 
base e (see EXP(X)). To convert 10 log base 10. divide by LOG(10). 

EXAMPLE: 

PRINT LOG (3715) 
2.00148 

-Return a substring from a larger string 

MID$ (strlng,startlng posltlon[,length)) 

This function returns a substring specified by the LENGTH, starting 
at the character specified by the starting position. The starting posi­
tion of the substring defines the first character where the substring 
begins. The length of the substring is specilied by the length argue­
ment. Both of the numeric arguments can have values ranging from 

310 BASIC 7.0 ENCYCLOPEDIA-Basic Functions 



PEEK 

l_ 

PEN 

o to 255. If the starting position value is greater than the length of the 
string, or if the length value is zero, then MIO$ returns a null string 
value. If the length argument is left Qut , all characters to the right of 
the starting position are returned. 

EXAMPLE: 

PRINT MIDS(" COMMODORE 128",3,5) 
MMODO 

-Return contents of a specified memory location 

PEEK(X) 

This function returns the contents of memory location X. where X is 
located in the range 0 to 65535, returning a result between 0 and 
255. This is Ihe caunlerparl of Ihe POKE slalemenl. The dala will be 
returned from the bank selected by the most recent BANK com­
mand. See the BANK command. 

EXAMPLE: 

10 BANK 15:VIC = DEC(" DOOO") 
20 FOR I = 1 TO 47 
30 PRINT PEEK(VIC + I) 
40 NEXT 

This example displays the contents of the registers of the VIC chip. 

-Return X and Y coordinates of the light pen 

PEN(n} 

where n = a PEN returns the X coordinate Of light pen position. 
n = 1 PEN returns the Y coordinate of light pen position. 
n = 2 PEN returns the X coordinate of the 80 column display. 
n = 3 PEN returns the Y coordinate of the 80 column display. 
n = 4 PEN returns the light pen trigger value. 

Note that, like sprite coordinates, the PEN value is nol scaled and 
uses real coordinates. not graphic bit map coordinates. The X posi­
tion is given as an even number, ranging from approximately 60 to 
320, while the Y position can be any number from 50 to 250. These 
are the visible screen coordinate ranges, where all other values are 
not visible on the screen. A value of zero for either position means 
the light pen is off screen and has nollriggered an interrupt since 

3'1 BASIC 7.0 ENCYCLOPEDIA-Basic Functions 



POINTER 

POS 

Ihe lasl read. Nole Ihal COLLISION need nol be aClive 10 use PEN. A 
white background is usually required to stimulate the light pen. PEN 
values vary from CRT 10 CRT. 

Unlike the 40 column (VIC) screen, the 80 column (8563) coordinates 
are character row and column positions and not pixel coordinates 
like the VIC screen. Both the 40 and 80 column screen coordinate 
values are approximate and vary, due to the nature of light pens. The 
read values are not valid until PEN(4) is true. 

EXAMPLES: 

10 PRINT PEN(O};PEN(l) Displays the X and Y coordinates 01 
the light pen. 

10 DO UNTIL PEN(4):LOOP Ensures the read values are valid . 
20 X= PEN(2) 
30 Y = PEN(3) 
40 REM:REST OF PROGRAM 

- Relurn Ihe value of pi (3. 141 59265) 

7r 

EXAMPLE: 

PRINT lI" This returns the result 3,14159265 

-Return the address of a variable name 

POINTER (variable name) 

EXAMPLE: 

A = POINTER (Z) This example returns the address of variable Z. 

-Return the current cursor column position within the current 
screen window 

POS(XI 

The POS function indicates where the cursor is within the defined 
screen window. X is a dummy argument, which must be specified, 
but the value is ignored. 

EXAMPLE: 

PRINT POS(O) 
10 

312 BASIC 7.0 ENCYCLOPEDIA-Basic Functions 



POT 

,-

RCLR 

This displays the current cursor position within the defined text win· 
dow, in this case 10. 

-Returns the value of the game-paddle potentiometer 

POT In) 

when: 

n :;; 1. POT returns the positIOn 01 paddle 6' 
n ;;;; 2, POT returns the posItIOn 01 paddle 12 
n = 3. POT returns the position of paddle (13 
n = 4, POT returns the positIOn 01 paddle 1/4 

The values for POT range from 0 to 255. Any value of 256 or more 
means that the fire bulton is also depressed. 

EXAMPLE: 

10 PRINT POT(l) 
20 IF POT(l) ) 256 THEN PRINT " FIRE" 

This example displays the value of the game paddle 1. 

-Return color of color source 

RCLRIN) 

This function returns the color (1 through 16) assigned to the color 
source N (O( N ( 6), where Ihe following N values apply: 

o = 40-column background 
1 ;;;; bit map foreground 
2 = multicolor 1 
3 = multicolor 2 
4 = 40-column border 
5 = 40· or BO·column character color 
6 = 8O·column background color 

The counterpart to the RCLR function is the COLOR command. 

EXAMPLE: 

10 FOR I = 0 TO 6 
20 PRINT " SOURCE";I;"IS COLOR CODE";RCLR(I) 
30 NEXT 

This example prints the color codes for aU six color sources. 

313 BASIC 7.0 ENCYCLOPEDIA-Basic Functions 



RDOT 

RGR 

RIGHT$ 

-Return current position or color source of pixel cursor 

RDOT(N) 

where: 
N :;; a returns the X coordinate of the pixel cursor 
N :;; 1 returns the Y coordinate of the pixel cursor 
N = 2 returns the color source of the pixel cursor 

This function returns the location of the current position of the pixel 
cursor (PC) or the current color source of the pixel cursor. 

EXAMPLES: 
PRINT ROOT(O) Returns X position of PC 
PRINT RDOT(1) Returns Y position of PC 
PRINT RDOT(2) Returns color source of PC 

-Return current graphic mode 

RGR(X) 

This function returns the current graphic mode. X is a dummy argu­
ment, which must be specified. The counterpart of the RGR function 
is the GRAPHIC command. The value returned by RGR(X) pertains to 
the following modes: 

VALUE GRAPHIC MODE 
a 40 column (VIC) text 
1 Standard bit map 
2 Split screen bit map 
3 Multicolor bit map 
4 Split screen Multicolor bit map 
5 80 column (8563) text 

EXAMPLE: 

PRINT RGR(O) 
1 

Displays the current graphic mode; 
in this case, standard bit map mode. 

-Return sub-string from rightmost end of string 

RIGHTS ({string ) , ( numeric ») 

This function returns a sub-string taken from the rightmost charac­
ters of the string argument. The length of the sub-string is defined by 
the length argument which can be any integer in the range of a to 
255. If the value of the numeric expression is zero, then a null string 
is returned. If the value given in the length argument is greater than 

314 BASIC 7.0 ENCYCLOPEDIA-BasIc Functions 

--



RND 

RSPCOLOR 

the length of the string, the entire string is returned. Also see the 
LEFT$ and MID$ functions. 

EXAMPLE: 

PRINT RIGHTS(" BASEBALL",5) 
EBALL 

-Return a random number 

RND (X) 

This function returns a random number between 0 and 1. This is use­
ful in games, to simulate dice roll and other elements of chance. It is 
also used in some statistical applications. 

If X = 0 AND returns a random number based on the hardware 
clock. 

If X ) 1 RND generates a reproducible psuedo-random number 
based on the seed value below. 

If X ( a produces a random number which is used as a base 
called a seed. 

To simulate the rolling of a die, use the formula INT(AND(1)-6+ 1). 
First the random number from 0 to 1 is multiplied by 6, which 
expands the range to 0-6 (actually, greater than zero and less than 
six). Then 1 is added, making the range greater than 1 and less than 
7. The INT function truncates all the decimal places, leaving the 
result as a digit from 1 to 6. 

EXAMPLES: 

PRINT RNO(O) 
.507824123 
PRINT INT(RNO(1)"100 + 
89 

Displays a random number 
between 0 and 1. 

1) Displays a random number 
between 1 and 100 

-Return sprite multicolor values 

RSPCOLOR (register) 

When: 

X = 1 RSPCOLOR returns the sprite multicolor , . 
X = 2 RSPCOLOR returns the sprite multlcolor 2. 

The returned color value is a value between 1 and 16. The counter­
part of the RSPCOLOR function is Ihe SPRCOLOR stalement. Also 
see the SPRCOLOR statement. 

315 BASIC 7.0 ENCYCLOPED1A- Basic Functions 



RSPPOS 

RSPRITE 

EXAMPLE: 

10 SPRITE 1,1,2,0,1,1,1 
20 SPRCOLOR 5,7 
30 PRINT" SPRITE MULTICOLOR 1 IS" ;RSPCOLOR(l) 
40 PRINT" SPRITE MULTICOLOR 2 IS";RSPCOLOR(2) 
RUN 

SPRITE MULTICOLOR 1 IS 5 
SPRITE MULTICOLOR 2 IS 7 

In this example line 10 turns on sprite 1, colors it while, expands il in 
both the X and Y directions and displays it in multi color mode. Line 
20 selects sprite mul\icolors 1 and 2. Lines 30 and 40 print the RSP· 
COLOR values for multicolor 1 and 2. 

-Return the speed and position values of a sprite 

RSPPOS (sprite number,posltlon/sp •• d) 

where sprite number identifies which sprite is being checked, and 
position and speed specifies X and Y coordinates or the sprite's 
speed. 

When position equals: 

o RSPPOS returns the current X position of the specified sprite. 
1 RSPPOS returns the current Y position of the specified sprite. 

When speed equals: 

2 RSPPOS returns the speed (0·15) of the specified sprite. 

EXAMPLE: 
10 SPRITE 1,1,2 
20 MOVSPR 1,45#13 
30 PRINT RSPPOS (l ,O);RSPPOS (l ,l);RSPPOS (1 ,2) 

This example returns the current X and Y sprite coordinates and the 
speed (13). 

-Return sprite characteristics 

RSPRITE (sprite number,characterlstlc) 

RSPRITE returns sprite characteristics that were specified in the 
SPRITE command. Sprite number specifies the sprite you are check· 

316 BASIC 7.0 ENCYCLOPEDIA-BasIc Functions 



RWINDOW 

,-

ing and the characteristic specifies the sprite's display quahties as 
follows: 

Characteristic RSPRITE return s 
these values: 

o Enabled( 1) I dlsabled(O) 
1 Sprite color (1-16) 
2 Sprites are displayed In Iront 

of (0) or behind (1) objects 
on the screen 

3 
4 
5 

EXAMPLE: 

Expand In X direction 
Expand in Y direction 
Mullicolor 

yes= 1, no=O 
yes = " no=O 
yes = 1, no=O 

10 FOR I = 0 TO 5 
20 PRINT RSPRITE (1 ,1) 
30 NEXT 

ThiS example prints all 6 
characteristiCS of sprite 1. 

-Returns the size of the current window 

RWINDOW(n) 

When n equals: 

o RWINDOW returns the number of lines in the current WindOW. 

1 RWINDOW returns the number of rows In the current window. 
2 RW1NDOW returns either of the values 40 or 60, depending on 

the current screen output format you are uSing. 

The counterpart of the RWINDOW function is the WINDOW 
command. 

EXAMPLE: 

10 WINDOW 1,1,10,10 
20 PRINT RWINDOW(0);RWINDOW(1);RWINDOW(2) 
RUN 
10 10 40 

This example returns the number of lines (1 0) and columns (10) in the 
current window. This example assumes you are displaying the win­
dow in 40 column format. 

317 BASIC 7.0 ENCYCLOPEDIA-Basic Funcllons 



SGN 

SIN 

SPC 

-Return sign of argument X 

SGNIXI 
This function returns the sign,(positive, negative or zero) of X. The 
result is + 1 if X > 0, a if x = 0, and - 1 if X ( O. 

EXAMPLE: 

PRINT SGNI4.51;SGN(0);SGNI-2.3) 
1 0 - 1 

-Return sine of argument 

SINIXI 
This is the trigonometric sine function. The result is the sine of X. X is 
measured in radians. 

EXAMPLE: 

PRINT SIN (. 13) 
.866025404 

-Skip spaces on the screen 

SPC IXI 
This function is used in PRINT or PRINTH commands to control the 
formatting of data, as either output to the screen or output to a logi­
cal file. The number of SPaCes specified by X determines the num· 
ber of characters to fill with spaces across the screen or In a file. For 
screen or tape files, the value of the argument is in the range 0 to 
255 and for disk files the maximum is 254. For printer files, an auto­
matic carriage-return and line-feed will be performed by the printer if 
a SPaCe is printed in the last character position of a line. No SPaCes 
are printed on the following line. 

EXAMPLE 

PRINT " COMMODORE" ;SPC(3);" 128" 
COMMODORE 128 

318 BASIC 7_0 ENCYCLOPEDIA-Basic Funclions 



SOR 

STRS 

TAB 

-Return square rool 01 argument 

SOR(X) 

This function returns the value of the SQuare Root of X, where X is a 
positive number or O. The value of the argument must not be nega­
tive. or the BASIC error message ?ILLEGAL QUANTITY is displayed. 

EXAMPLE: 
PRINT SQR(2S) 
5 

-Return string representation of number 

STRS{X) 

This function returns the STRing representation of the numeric value 
of the argument X. When the STR$ value is converted to each varia­
ble represented in the argument, any number displayed is preceded 
and followed by a space except for negative numbers which are pre­
ceded by a minus sign. The counterpart of the STR$ function is the 
VAL function. 

EXAMPLE 

PRINT STRS(123.45) 
123.45 

PRINT STRS( - 89.03) 
- 89.03 

PRINT STRS(1E20) 
lE+20 

-Moves cursor to tab position in present statement 

TAB (X) 

This function moves the cursor forward if possible to a relative posi­
tion on the text screen given by the argument X, starting with the lelt­
most position 01 the current line. The value 01 the argument can 
range lrom a to 255. II the current print position is already beyond 
position X, TAB places the cursor in the X position in the next line. 
The TAB function can only be used with the PRINT statement, since 
it has no effect if used with the PRINT# to a logical lile. 

EXAMPLE: 

10 PRINT" COMMODORE"TAB(25)" 128" 
COMMODORE 128 

319 BASIC 7.0 ENCYCLOPEDIA-Basic Functions 



TAN 

USR 

VAL 

-Return tangent of arguement 

TAN(X) 

This function returns the tangent of X, where X is an angle in radians. 

EXAMPLE: 

PRINT TAN(.785398163) 
1 

-Call user-defined subprogram 

USR(X) 

When this function is used, the program jumps to a machine lan­
guage program whose starting point is contained in memory loca­
lions 4633($1219) and 4634($121A). (and 785($0311) and 786($0312) 
for C64 mode). The parameter X is passed to the machine-language 
program in the floating point accumulator. A value is returned to the 
BASIC program through the calling variable. You must redirect the 
value into a variable in your program in order to receive the value 
back from Ihe floaling point accumulalor. An ILLEGAL QUANTITY 
ERROR results if you don't specify this variable. This allows the user 
to exchange a variable between machine code and BASIC. 

EXAMPLE: 

10 POKE 4633,0 
20 POKE 4634,192 
30 A = USR(X) 
40 PRINT A 

Place starling locallon ($COOO = 49152:$00 = O:$CO = 192) 01 
machine language routine in location 4633 and 4634. line 30 stores 
the returning value from the floating point accumulator. 

-Return the numeric value of a number string 

VAL(X$) 

This function converts the string X$ into a number which is the 
inverse operation of STR$, The string is examined from the left-most 
character to the right, for as many characters as are in recognizable 
number format. If the Commodore 128 finds illegal characters, only 
the por tion of the string up to that pOint is converted. If no numeric 
characters are present, VAL returns a O. 

320 BASIC 7.0 ENCYCLOPEDIA-Basic FunctIOns 



XOR 

EXAMPLE: 

10 A$ = "1 20" 
20 B$ = "365" 
30 PRINT VAL AS + BS 
RUN 
485 

-Return exclusive OR 

XOR (n1,n2) 

This function provides the exclusive OR of the argument values n1 
and n2. 

x = XOR (n1,n2) 

where nl, n2, are 2 unsigned values (0-65535). 

EXAMPLE: 

PRINT XOR(128,64) 
192 

321 BASIC 7.0 ENCYCLOPEDIA- Basic Functions 





L 

. -

SECTION 19 
Variables and 
Operators 

VARIABLES 

OPERATORS 

323 BASIC 7.0 ENCYCLOPEDIA-Variables and Operators 

325 

327 





Variables The Commodore 128 uses three types of variables In BASIC. These 
are: normal numeric, integer numeric and string (alphanumeric). 

Normal NUMERIC VARIABLES, also calied Iloating point vanables, 
can have any exponent value from ~ 10 to + 10, with up to nine dig­
its of accuracy. When a number becomes larger than nine digits can 
show, as in + 10 or - 10, the computer displays it in scientific nota­
tion form, with the number normalized to one digi t and eight decimal 
places, followed by the letter E and the power of 10 bywhich the 
number is multiplied. For example, the number 12345678901 is dis­
played as 1.23456789E + 10. 

INTEGER VARIABLES can be used when the number is lrom 
+ 32767 to - 32768, and with no fractional portion. An integer varia­
ble is a number like 5. 10 or - 100. Integers take up less space than 
floating point variables, particularly when used in an array. 

STRING VARIABLES are those used for character data, which may 
contain numbers, letters and any other characters the Commodore 
128 can display. An example of a string variable is "Commodore 
128." 

VARIABLE NAMES may consist of a single letter, a letter followed by 
a number or two letters. Variable names may be longer than two 
charac ters, but only the first two are significant. An integer is speci­
fied by using the percent sign (%) after the variable name. String 
variables have a dollar sign ($) after their names. 

EXAMPLES: 

Numeric Variable Names: A, AS, BZ 
Integer Variable Names: A%, AS% , BZ% 
String Variable Names: A$, AS$, BZ$ 

ARRAYS are lists of variables with the same name, using an extra 
number (or numbers) to specify an element of the array. Arrays are 
defined using the DIM statement and may be floating point. integer 
or string variable arrays. The array variable name is followed by a set 
of parentheses 0 enclosing the number of the variable in the list. 

EXAMPLE: 

A(7), BZ% (11), A$(87) 

Arrays can have more than one dimension. A two·dimensional array 
may be viewed as having rows and columns, with the first number 
identifying the row and the second number identifying the column 
(as if specifying a certain grid on a map). 

325 BASIC 7.0 EN CYCLOPEDIA-Variables and Operators 



EXAMPLE: 

A(7,2), 6Z% (2,3,4), Z5(3,2) 

RESERVED VARIABLE NAMES are names reserved for use by the 
Commodore 128, and may not be used for another purpose. These 
are the variables DS, DS$, ER, ERR$, EL. ST. TI and TI$. KEYWORDS 
such as TO and IF or any other names thaI contain KEYWORDS, 
such as RUN, NEW or LOAD cannot be used. 

5T is a status variable for input and output (except normal screen! 
keyboard operations). The value of 8T depends on the results of the 
last 1/0 operation. In general, If the value of 5T is O. then the opera­
tion was successful. 

TI and TI$ are variables that relate to the real time clock buill into the 
Commodore 128. The system clock is updated every 1/60th of a sec­
ond. It starts at a when the Commodore 128 is turned on, and IS 

reset only by changing the value of TI$, The variable TI gives the cur­
rent value of the clock in 1/60th of a second, TI$ is a string that reads 
the value of the real time clock as a 24·hour clock. The first two char· 
acters of TI$ contain the hour, the third and fourth charac ters are 
minutes and the fifth and sixth characters are seconds. This variable 
can be set to any value (so long as all characters are numbers) and 
will be updated automatically as a 24-hour clock, 

EXAMPLE: 

TI$ :;::: "101530" Sets the clock to 10:15 and 30 seconds (AM), 

The value of the clock is lost when the Commodore 128 IS turned off. 
It starts at zero when the Commodore 128 is turned on, and is reset 
to zero when the value of the clock exceeds 235959 (23 hours, 59 
minutes and 59 seconds). 

The variable OS reads the disk drive command channel and returns 
the current status of the drive. To get this information In words. 
PRINT OS$. These status variables are used after a disk operation, 
like OLOAO or OSAVE, to find out why the error light on the disk drive 
is blinking, 

ER, EL and ERR$ are variables used in error trapping routines. They 
are usually only useful within a program. ER returns the last error 
encountered since the program was RUN . EL is the line where the 
error occurred. ERR$ is a function that allows the program to print 
one of the BASIC error messages. PRINT ERR$(ER) prinls out the 
proper error message. 

326 BASIC 7.0 ENCYCLOPEDIA-Variables and Operators 



Operators The BASIC OPERATORS include ARITHMETIC, RELATIONAL and 
LOGICAL OPERATORS. The ARITHMETIC operators include the tol­
lowing signs: 

+ addition 
- subtraction 
• multiplication 
I division 
r raising to a power (exponentiation) 

On a line containing more than one operator, there is a set order in 
which operations always occur. If several operators are used 
together, the computer assigns priorities as follows: First, exponen· 
tiation, then multiplication and division, and last, addition and sub­
traction. If two operators have the same priority, then calculations 
are performed in order from left to right. If these operations are to 
occur in a different order, Commodore 128 BASIC allows giving a 
calculation a higher priority by placing parentheses around it. Opera­
tions enclosed in parentheses will be calculated before any other 
operat ion. Make sure the equations have the same number of left 
and right parentheses, or a SYNTAX ERROR message is posted 
when the program is run. 

There are also operators for equalities and inequalities. called RELA­
TIONAL operators. Arithmetic operators always take priority over 
relational operators. 

( 

) 
( = or = ( 

) = or = ) 
() or ) ( 

is equal to 
is less than 
is greater than 
is less than or equal to 
is greater than or equal to 
is not equal to 

Finally, there are three LOGICAL operators, with lower priority than 
both arithmetic and relational operators: 

AND 
OR 
NOT 

These are most often used to join multiple formulas in IF ... THEN 
statements. When they are used with arithmetic operators, they are 
evaluated last (i.e., after + and -). If the relationship stated in the 

327 BASIC 7.0 ENCYCLOPEDIA-Variables and Operators 



expression is true, the result is assigned an integer value of - 1. If 
false, a value of 0 is assigned. 

EXAMPLES: 

IF A= BAND C'D THEN 100 

IF A = B OR C'D THEN 100 

A= 5:B=4:PRINT A = B 
A = 5:B = 4:PRINT A)3 
PRINT 123 AND 15:PRINT 5 
OR 7 

Requires bOlh A = B & C 
= D to be true. 
Allows either A = B or C = 
D to be true. 
Displays a value of O. 
Displays a value of - 1. 
Displays 11 and 7. 

328 BASIC 7.0 ENCYCLOPEDIA-Variables and Operators 



SECTION 20 
Reserved Words 
and Symbols 

RESERVED SYSTEM WORDS (KEYWORDS) 

RESERVED SYSTEM SYMBOLS 

329 BASIC 7.0 ENCYCLOPEDIA-Reserved Words and Symbols 

331 

332 



_._. 



Reserved System This section lists the words and symbols used to make up the BASIC 
Words (Keywords) 7.0 language. These words and symbols cannot be used within a 

program as other than a component of the BASIC language. The only 
exception is that they may be used within quotes in a PRINT state-
ment. 
ABS DIM HEADER PRINT USING SPRITE 
AND DIRECTORY HELP PRINH SPRSAV 
APPEND DLOAD HEX$ PRINT# USING SOR 
ASC DO IF PUDEF ST 
ATN DOPEN INPUT RCLR STASH 
AUTO DRAW INPUH RDOT STEP 
BACKUP D$ INSTR READ STOP 
BANK DSAVE INT RECORD STR$ 
BEGIN DS$ JOY RENAME SWAP 
BEND DVERIFY KEY RENUMBER SYS 
BLOAD EL LEFT$ RESTORE TAB 
BOOT ELSE LEN RESUME TAN 
BOX END LET RETURN TEMPO 
BSAVE ENVELOPE LIST RGR THEN 
BUMP ER LOAD RIGHT$ TI 
CHAR ERR$ LOCATE RND TI$ 
CHR$ EXIT LOG RSPCOLOR TO 
CIRCLE EXP LOOP RSPPOS TRAP 
CLOSE FAST MID$ RSPRITE TRON 
CLR FETCH MONITOR RUN TROFF 
CMD FILTER MOVSPR RWINDOW UNTIL 
COLLECT FN NEW SAVE USR 
COLOR FOR NEXT SCALE VAL 
CONCAT FRE NOT SCNCLR VERIFY 
CONT GET ON SCRATCH VOL 
COPY GETKEY OPEN SGN WAIT 
COS GEH OR SIN WHILE 
DATA G064 PAINT SLEEP WIDTH 
DCLEAR GOSUB PEN SLOW WINDOW 
DClOSE GOTO PLAY SOUND XOR 
DEC GO TO POS SPC 
DEFFN GRAPHIC POT SPRCOLOR 
DELETE GSHAPE PRINT SPRDEF 

331 BASIC 7.0 ENCYCLOPEDIA-Reserved Words and Symbols 



Reserved System 
Symbol. 

332 

The following characters are reserved system symbols. 

Symbol Use(s) 

+ Plus sign movement Arithmetic addition; string concatenation; 
relative Pixel Cursor/sprite movement; 
declare decimal number In machine 
language monitor 

Minus sign Arithmetic subtraction: negative number; 
movement unary minus: relative pixel cursor! sprite 

movement 
• Asterisk Arithmetic multiplication 
I Slash Arithmetic division 
1 Up arrow Arithmetic exponentiation 

Blank space Separate keywords and variable names 
= Equal sign Value aSSignment: relationship testing 
( less than Relationship testing 
) Greater than Relationship lesting 

Comma Formal output in variable lists; command! 
statement function parameters 

Period Decimal point in floaling point constants 
Semicolon Format output in variable lists 
Colon Separate multiple BASIC statements on a 

program line 
"" Quotation mark Enclose string constants 
? Question mark Abbreviation for the keyword PRINT 

left parenthesis Expression evaluation and functions 
Right parentheSIS Expression evaluatton and functions 

% Percent Declare a variable name as integer; 
declare binary number in machine 
language monitor 

* Number Precede the logical lile number in Inputl 
output statements 

$ Dollar sign Declare a variable name as a string and 
declares hexadecimal number in 
machine language moMor 

& And sign Declare octal number in machine 
language monitor 

r Pi Declare the numeric constant 
3.141592654 

BASIC 7.0 ENCYCLOPEDIA-Reserved Words and Symbols 



APPENDICES 

APPENDIX A - BASIC LANGUAGE ERROR MESSAGES 
APPENDIX B - DOS ERROR MESSAGES 
APPENDIX C - CONNECTORS/PORTS FOR PERIPHERAL 

EQUIPMENT 
APPENDIX D - SCREEN DISPLAY CODES 
APPENDIX E - ASCII AND CHR$ CODES 
APPENDIX F - SCREEN AND COLOR MEMORY MAPS 
APPENDIX G - DERIVED MATHEMATICAL FUNCTIONS 
APPENDIX H - MEMORY MAP 
APPENDIX I - CONTROL AND ESCAPE CODES 
APPENDIX J - MACHINE LANGUAGE MONITOR 
APPENDIX K - BASIC 7.0 ABBREVIATIONS 
APPENDIX L - DISK COMMAND SUMMARY 

333 APPENDICES 





APPENDIX A The following error messages are displayed by BASIC. Error mes-
BASIC LANGUAGE sages can also be displayed with the use of the ERR$O function. The 
ERROR error numbers below refer only to the number assigned to the error 
MESSAGES for use with the ERR$O function. 

ERRORH ERROR NAME DESCRIPTION 

1 TOO MANY FILES There IS a limit of 10 files 
OPEN at one lime. 

2 FILE OPEN An attempt was made to open 
a file using the number of an 
already open file. 

3 FILE NOT OPEN The file number specified in an 
1/0 statement must be opened 
before use. 

4 FILE NOT FOUND Either no file with thai name 
exists (disk) or an end-ol-tape 
marker was read (tape). 

5 DEVICE NOT PRESENT The required 110 device is not 
available or buffers dealloca-
ted (cassette). Check to make 
sure the device is connected 
and turned on. 

6 NOT INPUT FILE An attempt was made to GET 
or INPUT data from a file that 
was specified as output only. 

7 NOT OUTPUT FILE An attempt was made to send 
data to a file that was speci-
fied as Input only. 

8 MISSING FILE NAME File name missing in 
command. 

9 ILLEGAL DEVICE An attempt was made to use a 
NUMBER device improperly (SAVE to 

the screen, etc.). 

335 APPENDIX A- BasIc l anguage Error Messages 



10 NEXT WITHOUT FOR Either loops are nested incor-
rectly, or there is a variable 
name in a NEXT statement 
that doesn't correspond with 
one in FOR. 

11 SYNTAX A statement not recognized by 
BASIC. This could be because 
of a missing or extra parenthe-
sis, misspelled key word, etc. 

12 RETURN WITHOUT A RETURN statement was en-
GOSUB countered when no GOSUB 

statement was active. 

13 OUT OF DATA A READ statement encoun-
tered without data left 
unREAD, 

14 ILLEGAL OUANTITY A number used as the argu-
ment of a function or state-
ment is outside the allowable 
range. 

15 OVERFLOW The result of a computation is 
larger than the largest number 
allowed (1.701411834E + 38), 

16 OUT OF MEMORY Either there is no more room 
lor program code and/or pro-
gram variables. or there are 
too many nested DO, FOR or 
GOSUB statements in effect. 

17 UNDEF'D STATEMENT A line number referenced 
doesn't exist in the program. 

18 BAD SUBSCRIPT The program tried to reference 
an element of an array out of 
the range specified by the D!M 
statement. 

19 REDIM'D ARRAY An array can only be DIMen· 
sioned once. 

336 APPENDIX A-Basic language Error Messages 



20 DIVISION BY ZERO Division by zero is not allowed. 

21 ILLEGAL DIRECT INPUT or GET. or INPUT H or 
GET II statements are only 
allowed within a program. 

22 TYPE MISMATCH ThiS occurs when a numenc 
value is used In place of a 
string or vice versa. 

23 STRING TOO LONG A string can contain up to 255 
characters. 

24 FILE DATA Bad data read from a tape or 
disk file. 

25 FORMULA TOO The computer was unable to 
COMPLEX understand this expression. 

Simplify the expression (break 
into two parts or use fewer 
parentheses). 

26 CAN'T CONTINUE The CONT command does not 
work If the program was not 
RUN, there was an error, or a 
line has been edited. 

27 UNDEF'D FUNCTION A user-defined function was 
referenced that was never 
defined. 

28 VERIFY The program on lape or disk 
does not match the program in 
memory. 

29 LOAD There was a problem loading. 
Try again. 

30 BREAK The stop key was hit to hall 
program execution. 

31 CAN'T RESUME A RESUME statement was 
encountered without a TRAP 
statement in effect. 

337 APPENDIX A- Basic Language Error Messages 



32 LOOP NOT FOUND The program has encountered 
a DO statement and cannot 
find the corresponding LOOP 

33 LOOP WITHOUT DO LOOP was encountered wIth-
out a DO statement active. 

34 DIRECT MODE ONLY This command is allowed only 
In direct mode. not from a 
program. 

35 NO GRAPHICS AREA A command (DRAW, BOX, 
etc.) to create graphics was 
encountered before the 
GRAPHIC command was 
executed. 

36 BAD DISK An attempt lailed to HEADER 
a diskette, because the quick 
header method (no I D) was 
attempted on an unformatted 
diskette or the diskette is bad. 

37 BEND NOT FOUND The program encountered an 
"IF .. . THEN BEGIN" or "IF 
.. . THEN ... ELSE BEGIN" 
construct, and CQuid not find a 
BEND keyword to match the 
BEGIN. 

38 LINE # TOO LARGE An error has occurred in 
renumbering a BASIC pro-
gram. The given parameters 
result in a line number> 
63999 being generated: there-
fore, the renumbering was not 
performed. 

39 UNRESOLVED An error has occurred in 
REFERENCES renumbering a BASIC pro· 

gram. A line number referred 
to by a command (e.g., GOTO 
999) does not exist. Therefore, 
the renumbering was not 
performed. 

338 APPENDIX A-Basic Language Error Messages 



40 

41 

UNIMPLEMENTED 
COMMAND 

FILE READ 

A command not suppar ted by 
BASIC 7.0 was encountered. 

An error condition was 
encountered while loading or 
reading a program or file from 
the disk drive (e.g .. opening 
the disk drive door while a 
program was loading). 

339 APPENDIX A-Basic language Error Messages 





APPENDIXB 
DOS ERROR 
MESSAGES 

The following DOS error messages are returned through the OS and 
DS$ variables. The OS variable contains jusllhe error number and 
the DS$ variable contains the error number, the error message. and 
any corresponding track and sector number. NOTE: Error message 
numbers less than 20 should be ignored with the exception of 01 . 
which gives information about the number of flies scratched with the 
SCRATCH command. 

ERROR ERROR MESSAGE AND 
NUMBER DESCRIPTION 

20 READ ERROR (block header nollound) 
The disk controller is unable to locate the header of the 
requested data block. Caused by an illegal sector num· 
ber, or the header has been destroyed. 

21 READ ERROR (no sync characler) 
The disk controller is unable to delect a sync mark on 
the desired track. Caused by misalignment of the read! 
write head, no diskette is present. or unformatted or 
improperly seated diskette. Can also indicate a hard· 
ware failure. 

22 READ ERROR (data block not present) 
The disk controller has been requested to read or verify 
a data block that was not properly written. This error 
occurs in conjunction with the BLOCK commands and 
can indicate an illegal track andlor sector request. 

23 READ ERROR (checksum error In dala block) 
This error message indicates there IS an error In one or 
more of the data bytes. The data has been read Into the 
DOS memory, but the checksum over the data IS In error. 
This message may also indicate hardware grounding 
problems. 

24 READ ERROR (byle decoding error) 
The data or header has been read into the DOS memory 
but a hardware error has been created due to an invalid 
bit pattern in the data byte. This message may also indi­
cate hardware grounding problems. 

341 APPEN DIX B- DOS Error Messages 



25 WRITE ERROR (write· verily error) 
This message is generated jf the controller detects a 
mismatch between the written data and the data in the 
DOS memory. 

26 WRITE PROTECT ON 
This message is generated when the controiler has been 
requested to write a data block while the write protect 
switch is depressed. This is caused by uSing a diskette 
with a write protect lab over the notch. 

27 READ ERROR 
This message is generated when a checksum error has 
been detected in the header of the requested data 
block. The block has not been read into DOS memory. 

28 WRITE ERROR 
This error message is generated when a data block is 
too long and overwrites the sync mark of the next 
header. 

29 DISK ID MISMATCH 
This message is generated when the controller has been 
requested to access a diskette which has not been ini­
tialized. The message can also occur if a dIskette has a 
bad header. 

30 SYNTAX ERROR (general syntax) 
The DOS cannot interpret the command sent to the 
command channel. TYPIcally, this is caused by an illegal 
number of file names, or patterns are illegally used. For 
example, two file names appear on the left sIde of the 
COPY command. 

31 SYNTAX ERROR (invalid command) 
The DOS does not recognize the command. The com· 
mand must start in the first position. 

32 SYNTAX ERROR (invalid command) 
The command sent is longer than 58 characters. Use 
abbreviated disk commands. 

33 SYNTAX ERROR (invalid file name) 
Pattern matching is invalidly used in the OPEN or SAVE 
command. Spell out the file name. 

34G APPENDIX 6-005 Error Messages 



34 SYNTAX ERROR (no file given) 
The file name was left oul of the command or the DOS 
does not recognize it as such. Typically, a colon (:) has 
been left out of the command. 

39 SYNTAX ERROR (invalid command) 
This error may result if the command sent to the com­
mand channel (secondary address 15) is unrecognized 
by Ihe DOS. 

50 RECORD NOT PRESENT 
Result of disk reading past the last record through 
INPurN or GET# commands. This message will also 
occur after positioning to a record beyond end-ol·file in a 
relative file. If the intent is to expand the file by adding 
the new record (with a PRINT# command), the error 
message may be ignored. INPUT II and GET # should 
not be attempted after this error is detected without first 
repositioning. 

51 OVERFLOW IN RECORD 
PRINT# statement exceeds record boundary. Informa· 
tion is truncated. Since the carriage return which is sent 
as a record terminator is counted in the record size, this 
message will occur if the total characters in the record 
(including the final carriage return) exceeds the defined 
size of the record. 

52 FILE TOO LARGE 
Record position within a relative file Indicates that disk 
overflow will result. 

60 WRITE FILE OPEN 
This message is generated when a write flle that has not 
been closed is being opened for reading. 

61 FILE NOT OPEN 
This message is generated when a file is being 
accessed that has not been opened in the DOS. Some· 
times, in this case, a message is not generated; the 
request is simply ignored. 

62 FILE NOTFOUND 
The requested file does not eXist on the indicated drive. 

343 APPENDIX B-DOS Error Messages 



63 FILE EXISTS 
The file name of the file being created already exists on 
the diskette. 

64 FILE TYPE MtSMATCH 
The requested file access is not possible using files of 
the type named. Reread the chapter covering that file 
type. 

65 NO BLOCK 
Occurs in conjunction with Block Allocation. The sector 
you tried to allocate is already allocated. The track and 
sector numbers returned are the next higher track and 
sector available. If the track number returned is zero (0), 
all remaining sectors are full. If the diskette is not full yet, 
try a lower track and sector. 

66 ILLEGAL TRACK AND SECTOR 
The DOS has attempted to access a track or block 
which does not exist in the format being used. This may 
indicate a problem reading the pointer to the next block. 

67 ILLEGAL SYSTEM T OR S 
This special error message indicates an illegal system 
track or sector. 

70 NO CHANNEL (available) 
The requested channel is not available, or all channels 
are in use. A maximum 01 five buffers are available for 
use. A sequential file requires two buffers; a relative file 
requires three buffers; and the error/command channel 
requires one buffer. You may use any combination of 
those as long as the combination does not exceed five 
buffers. 

71 DIRECTORY ERROR 
The BAM (Block Availability Map) on the diskette does 
not match the copy on disk memory. To correct, initialize 
the diskette. 

72 DISK FULL 
Either the blocks on the diskette are used or the direc· 
tory is at its entry limit. DISK FULL is sent when two 
blocks are still available on the diskette, in order to allow 
the current file to be closed. 

344 APPEN[)IX B-DOS Error Messages 



73 DDS VERSION NUMBER 
DOS 1 and 2 are read compatible but not write compat­
ible. Disks may be interchangeably read with either 
DOS, but a disk formatted on one version cannot be 
written upon with the other version because the format 
is different. This error is displayed whenever an attempt 
is made towrile upon a disk which has been formatted 
in a non-compatible format. This message will also 
appear after power-up and is not an error in this case. 

74 DRIVE NOT READY 
An attempt has been made to access the disk drive 
without a diskette inserted; or the drive lever or door is 
open. 

345 APPEN DlX B-DOS Error Messages 





APPENDIX C 
CDNNECTDRSI 
PDRTSFOR 
PERIPHERAL 
EQUIPMENT 

COMMODORE CONNECTIONS FOR PERIPHERALS 

4 3 

347 APPENDIX C-ConnectorsIP¢rIS for Peripheral EQuipment 

2 1 



Side Panel 
Connections 

1. Power Socket-The free end of the cable from the power supply 
IS attached here. 

2. Power Switch-Turns on power lrom the transformer. 

3. Reset Button-Resets computer (warm start). 

4. Controller Ports-There are two Controller ports, numbered 1 
and 2. Each Controller port can accept a joystick or game con· 
troller paddle. A light pen can be plugged only into port 1, the 
port closest to the front of the computer. Use the ports as 
instructed with the software. 

C t IPrt1 on ~ 0 

Pin T, .. Nol. 

l JOYAQ 

2 JOYAl 

1 2 3 " 5 
o 0 000 , JOVA2 

• JOVA3 o 0 0 0 
) POT AY 6 1 8 9 

• 8UTTON AltP , ·)v MAX . SOmA 

• G" 
• POI AX 

C t IPrt2 on ~ 0 
!"in T, .. NOI. 

l JOY80 

2 JOY81 , JOY82 

• JOY83 , POT 8Y 

6 8UTTON 8 , +)v MAX . 3OmA 

• GNO , POT 8X 

348 APPENDIX C-ConneetorsJPorts lor Peripheral Equipment 



Rear Connections 5. Expansion Port-This rectangular slot IS a parallel porI that 
accepts program or game cartridges as well as special 
Interfaces. 

Cartridge hpanlion Slot 
- - O-;''"-l ...-J'"_ 

" " " OM)( 

"in T, po , GNO 
2 '>V 

" 0' 2 .5V 

" D6 • "A 

" 0' , ~W 

" o. , 00. Clock 

" 02 , '0 , 
19 02 8 GAME 
20 0' , "fX"i«5M 

" 00 

22 GNO L " '02 

" ~OMl 

"" T,po "in T,po 

N A' A G" , '" 8 iOMH 
R ., C ~ESET 

5 A' 0 NM' 
T ., 502 

U .. f ." 

V A2 N A" 
W A2 A" , ., , ." , AO A" 
Z GNO M A" 

I :::::::::::::::::::::: I 

3<19 APPENDIX C_ ConneclofslPorts lor Peripheral EQuipment 



6. Cassette Port-A 1530 Datassette recorder can be attached 
here to slore programs and information. 

CaSlette 

Pin "po 
A~' ONO , , , . , . 
.~2 +5V :::::: C~3 CASSene MOTOI1 

O~. CASSETTE I1EAD 
A8 COEF 

'~5 CASSETTE WI1ITE 

" CASSETTE SENSE 

7. Serial Port-A Commodore serial printer or disk drive can be 
attached directly to the Commodore 128 through this port. 

Serial 110 
Pin • 

SEI1IAL SI10lN 

'1 GN D 

3 SUIlAL AlN IN/OUT 

4 SEI1IAL eLK IN/OUT 

5 SH!lAL DAT A IN/OUT 

6 I1fSET 

350 APPENDIX C-Connectors/POrIS fOf Peripheral Equipment 



8. Video Connector-This DIN connector supplies direct audio and 
composite video signals. These can be connected to the Com­
modore monitor or used wi th separate components. This is the 
40 column output connector. 

Pin Type Note 

1 LUM/SYNC Luminance/SYNC output 
2 GND 
3 AUDIO OUT , VIDEO OUT Composite signal output 
5 AUDIO IN 
6 COLOR OUT Chroma signal output 
7 NC No connection 
B NC No connechoo 

9. Channel Selector-Use this switch to select which TV channet 
(L = channel 3, H = channel 4) the computer's picture will be 
displayed on when using a television Instead of a monitor. 

10. RF Connector-This connector supplies both picture and sound 
\0 your television set. (A television can display only a 40 column 
picture.) 

35t APPENDIX C-ConneclorslPorls for Peripheral EQuipment 



11 . RGBI Connector-This g·pin connec1or supplies direc1 audio and 
an RGBI (RedfGreenIBlue/1ntenslly) signal. ThIS IS the SO·column 
output. 

P'o SIgnal 

1 , 3 • , 1 Ground , Ground 
0 0 0 0 0 3 Rod 

4 Green 

0 0 0 0 
, Blue 

6 7 8 9 6 Inlenslty 
7 Monochrome • Horizontal Sync 
9 Vertical Sync 

12. User Port-Various Interface deVIces can be at tached here. 
includIng a Commodore modem. 

User 1/0 

Pin 7 N Ol O , ONO , +SV MAX 100 mA --
3 IIE!.El 

• CNTI , '" • CNT2 

7 '" , PC' , SEll . Al"N IN 

" ""C MAX 100 mA 

" "'.C MAX 100 mA 

" ONO 

Pin T Nolo 

A ONO --, HAG2 

C '80 
0 '" , "2 , ,OJ 
H '"' , '" X ". , "7 
M ""2 
N ONO 

1 2 3 ( 5 S 1 a t 10 11 12 

:::::::::::: 
A 8 C 0 E F H J K L M N 

352 APPENDIX C-ConnectorsJPorts for Peripheral EqUipment 



APPENDIX D 
SCREEN DISPLAY 
CODES 

Screen Display 
Code. 
40 Columns 

The following chart lists all of the characters built into the Commo­
dore screen character sets. It shows which numbers should be 
POKEd into screen memory (location 1024 to 2023) to gel a desired 
character on the 40-column screen. (Remember. to set color memo 
ory, use locations 55296 to 56295.) Also shown is which character 
corresponds to a number PEEKed from the screen. 

Two character sets are available. 80th are available simultaneously 
in BO-column mode, but only one is available at a time in 40-column 
mode. The sets are switched by holding down the SHIFT and C' 
(Commodore) keys simultaneously. 

From BASIC, PRINT CHR$(142) will switch to upper·case/graphics 
mode and PRINT CHR$(14) will switch to upper/lower· case mode. 

Any number on the chart may also be displayed in REVERSE. The 
reverse character code may be obtained by adding 128 to the values 
shown. 

.." m, POKE 5." SET , POK. .. " 5." POK • 

@ 0 N n ,. r 28 

A a 0 0 15 29 

B b 2 P P 
,. 

f 30 

C c 3 a q 17 - 3' 

D d • A ,. 32 

E • 5 S 5 ,. 33 

F • T 20 34 

G 9 7 U u 21 • 35 

H h • V , 22 $ 3. 

9 w w 23 % 37 

J i 10 X , 2. & 38 

K k 11 Y Y 25 3. 

L 12 Z z 2. 40 

M m 13 27 41 

353 APPENDIX D-Screen Display Codes 



SET , SET' "' .. SET , SET , "'K. SET , SEn "'K' 
42 [] G 71 0 100 

+ 43 OJ H 72 0 101 

44 E;J 73 IIlII 102 

45 ~ J 74 0 103 

46 El K 75 ~ 104 

I 47 0 L 76 ~ ~ 105 

0 48 M 77 0 106 
49 IZJ N 78 rn 107 

2 50 0 0 79 C. 108 

3 51 0 P 80 [g 109 

4 52 • a 81 6J 110 

5 53 bI A 82 I:l 111 

6 54 ~ S 83 ca 112 

7 55 [] T 84 Eg 113 

• 56 I:Ll U 85 53 114 

9 57 ~ V 06 BJ 115 

58 C W 87 D 116 

59 i!l X .. [] 117 

< 60 OJ y 89 [] 118 

- 61 (I] Z 90 Ll 119 

> 62 B3 91 ~ 120 
? 63 IJ 92 ~ 121 

8 84 OJ 93 0 [;2] 122 

~ A 65 @ II!!I 94 RJ 1Z3 

OJ B 66 95 ~ 124 

8 C 67 96 El 125 

El 0 68 97 ~ 126 

El E 69 98 ~ 127 

bI F 70 0 99 

Cod •• from 128-255 aN reverMd Image. 01 code. 0-127. 

354 APPENDIX O-Screen Display Codes 



APPENDIX E 
ASCII AND CHR$ 
CODES 

ASCII and CHRS 
Codes 

355 

This appendix shows you what characters will appear if you PRINT 
CHR$(X), for all possible values of X. 1\ also shows the values 
obtained by typing PRINT ASC ("x"), where x is any character that 
can be displayed. This is useful in evaluating the character received 
in a GET statement, converting upper to lower case and printing 
character-based commands (like switch to upper/lower case) that 
could not be enclosed in Quotes. 

PRINTS CHAO PRINTS CHRS PAINTS CHAO PRINTS CHAO 

0 23 46 E 69 

1 24 f 47 F 70 

2 25 0 46 G 71 

3 26 1 49 H 72 

4 27 2 50 I 73 - 5 - 28 3 51 J 74 

6 II 29 4 52 K 75 

7 - 30 5 53 L 76 

DlUkEs.Cla - 31 6 54 M 77 

EtI .... us.Cl9 .. 32 7 55 N 78 

10 ! 33 8 56 0 79 

11 .. 34 9 57 P 80 

12 • 35 58 a 81 

IiIIIIII 13 $ 36 59 A 82 

Bill 14 % 37 C 60 S 83 

15 & :lIl = 61 T 84 

16 39 J 62 U 85 .. 17 I 40 ? 63 V 86 

• 18 ) 41 @ 64 W 87 • 19 . 42 A 65 X 88 

• 20 + 43 B 66 Y 89 

21 , 44 C 67 Z 90 

22 - 45 0 68 I 91 

APPENDIX E-ASCI1 and CHRS Codes 



~INT. 

£ 

J 

t 

-a 
[!] 
rn 
B 
El 
LI 
g 
[J 
OJ 
W 
C3 
~ 
D 

0 
D 
0 • 0 

... , .... 
r""l 
I;;;l 

CODES 
CODES 
CODE 

CHOI 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

10. 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

CHAS 

184 

185 

"""'TO CH'" 

~ 115 

0 116 

[LJ 117 

~ 118 

0 119 

[!] 120 

OJ 121 

[I] 122 

EB 123 

IJ 12' 

rn 125 

ITD 126 

~ 127 

128 

Orange 129 

11 

13 

15 

17 

12 

........ 
0 
~ 

192·223 
224-254 

2" 

130 

131 

132 

133 

134 

135 

136 

137 

CHAS 

186 

187 

3~6 APPENDIX E-ASCII and CHRS Codes 

....... CHOI 

I. 138 

16 139 

18 140 _.,., 
I &lIB 142 

143 - 14. 

II 145 

• 146 

• 147 

• 148 

Brown 149 

It. Red 150 

Dk. Gray 151 

Gray 152 

Lt. Green 153 

It. Blue 

Lt. Gray 

• Ii 
a a -
... , .... 
~ 
e:J 

SAME AS 
SAME AS 
SAME AS 

154 

155 

156 

157 

158 

159 

160 

CHAO 

188 

189 

........ 
IJ 
\iiij 
0 
0 
D 
II 
0 
iiIiI 
~ 
0 
[8 
l..I 
~ 
5J 
c:l 
ca 
E:l 
53 
rn 
0 
[] 
[) 
U 

....... 
~ 
~ 

96·127 
160-190 
126 

CHAS 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

CHAS 

190 

191 



APPENOIXF 
SCREENANO 
COLOR MEMORY 
MAPS 

Screen And Color 
Memory Maps­
C128 Mode, 
40 Column 
And C64 Mode 

The following maps display the memory locations used In 40·column 
mode (C128 and C64) for identifying the characters on the screen as 
well as their color. Each map is separately controlled and consists of 
1,000 positions. 

The character displayed on the maps can be controlled directly with 
the POKE command. 

1014 -

''''' ,,~ 

11 14 
" U 
1114 

"" "., 
'"' " .. 1' 24 , .. 
"" '"' "" 1624 , ... 
,,~ 

1144 

" .. II?' , .. 
"" 19, 4 

" .. 

, 

, 

SCREEN MEMORY MAP 

'" 
I \ 

COLUMN 
10 

++ -

i"-

, 

--.... -

" ,., 
I 

I 

"" 

10 j 

" 

357 APPENDIX F-Screen and Color Memory Maps 



The Screen Map is POKEd with a Screen Display Code value (see 
Appendix D). For example: 

POKE 1024, 13 

will display the letter M in the upper-left corner of the screen. 

m,,­
SSJ.l6 

~~Ii ,." 
'"* m16 
mJ6 
ssm 
m" 
'"" m36 
Im6 
10$116 
,.0 , .. .. " ssm .. " ... -"'" \6116 
"m 
"'" 

COLOR MEMORY MAP 

" 
tatUM" 

• • " 11m 
I 

I 0.' 

• 

10 ~ 

" 

If the color map is POKEd with a color value; this changes the char· 
acter color. For example: 

POKE 55296, 1 

will change the letter M inserted above from light green to white. 

358 APPENDIX F-Screon and Color Memory Maps 



Color Codes-40 Columns 

o Black 
1 White 
2 Red 
3 Cyan 
4 Purple 
5 Green 
6 Blue 
7 Yellow 

8 Orange 
9 Brown 

10 Light Red 
11 Dark Gray 
12 Medium Gray 
13 Light Green 
14 Light Blue 
15 Light Gray 

Border Control Memory 53280 
Background Control Memory 53281 

359 APPENDIX F-Screen and COlor Memory Maps 





APPENDIXG 
DERIVED 
TRIGONOMETRIC 
FUNCTIONS 

FUNCTION 

SECANT 

COSECANT 

COtANGENT 

INVERSE SINE 
INVERSE COSINE 

INVERSE SECANT 

INVUISE COSECANT 

INVERSE COTANGENT 

HYPERBOliC SINE 
HYPER80lIC COSINE 

HYPERBOliC TANGENT 

HYPERBOLIC SECANT 

HYPERBOLIC COSECANT 

HYPERBOLIC COTANGENT 

INVERSE HYPERBOliC SINE 

INVERSE HYPERBOliC COSINE 

INVERSE HYPERBOliC TANGENT 

INVERSE HYPERBOLIC SECANT 

INVERSE HYPERBOLIC COSECANT 

INVERSE HYPERBOliC COlAN-

GENT 

eASIC EQU''ALENT 

SEqX)- IICOS(X) 
CSCII!:')- I/SI N!X) 
COI\Xj- tflAN(X) 

ARCSIN{X) - A.TN(X1SQR(- x· X'" I)) 

ARCCOS(X)- - ATN(XiSQR 

(-X' X +1» +#/2 
AIlCSEC(X)"' AlN(XlSQR(X ' X- I» 

ARCCSC(X)-A1N(X1SOR(X' X -1)) 
+(SGN(X)- ,' .. /'1 

AReOl(X)- A1N(X)+ rr/2 

51 NH(X)-(EXP(X)-EXpt X»)/2 
COSH(X)-(fXP(X)+ fXp( - XW2 
TAN foI(X)_ EXP( - X)/{EXpt.)+ exp 

I-X))". t 
SKH(X)- 2/tEXP(X)+ EXP( - X)) 

C5CH{X)- 21(EXP(X)-EXp( - X)) 

COI,",(X)" expt- X)/(EXptX ) 

- EXP( - X))'2+1 

ARCSINH(X)-lOG(X+ SOIl (X' X+ I» 
AIi'CCOSH(X)- lOG(X+SQR(X' X - I» 

ARCTANH(X)-lOG(( I + XV( I X))I2 

ARCSECH(X)- lOG((SQR 
(-X' X+I)+ I /X) 

ARCC$CH(X)-lOG({SGN(X)' SOR 

(X ' X+ 11K) 

ARCC01H(X) - l OG(X'" I W( _ 1))/2 

86~ APPENDIX G-OerlVed TrigonometriC Functions 

I , 





APPENDIX H 
MEMORY MAP 

System Memory 
Map 

The Commodore 128 memory map is shown below. 

COMMODORE 128 MODE 
MEMORY MAP 

, 
e12S 
RAM 

A NM I RSIIRO 
'" 
'" "00 CP/ M RA M cooe 

K'nlIVIM Code 

"'" Coohgur.JI OI)f1 Reg'SIe< 

BASIC TEXT AR£A 
I~SIC ,e" ~In$ 
~I $tCOO " tMHnap 
urW!Dt.lf(I) 

... 

, 
C12B 
ROM '" ,---'---

FF4D f------+ --- Ktrr\ilJump Tablet. ­
H.,ow". VeclorS 

ff05 L _____ + ---Ktr0a4lnlt<rup\ 
r Dosp,mn eo... 

FfOO ~""""" I""" --- MMUCoohgu'.J11OO 

, 

, 

, 

Reg~le" 

cao ___ __ ______ --- ROMRest, .. otar 
FOI"'II" L;I"ll vets"",! 

01.00 ___________ --- EouorTatlleS 

000 /_;;/-,.,_,,_/_;;; ---I(e, ... JIOIoi CocIo 

//////1"// 
////////// 

0000 '< '/ ""// ---I/OSploCe 

, .. ---- ------- - -- EOl101ROMCooe -------

" - , 
1 ) HIGH 
,_ --' ROM , , 

- - -- -- - - - - - -- - MOIUlorROM Catlle -- - - - - -,..._, 
r ) 10110 
,_ -' ROM , 

• 
:- -, lOW 
, ) ROM .. L-----+ ___ suo: ROM eo... ___ ____ ,. oJ 

363 APPENDIX H-Memory Map 

, 

, .. 
~ 

"'" ... 

COMMODORE 64 MODE 
MEMORY MAP 

064 
Cartridges 

GA ME CARP 

.------- ---

A~non 
rd- HI 

A~~llO!1 
IrO-lO 

06' 
FFFF ~--=-'--

, .. f------j 
1I0InG 
Ch.o" ~'--'=_-l 

]L __ "'_S_,,_---' 



• oro 

"00 
"00 

,,., 

"00 

,oro 
.. 00 
.. 00 

.oro 

... . ~ .... • 

, , 
, 
0 

., .. 
". 
'" " .. .... ... .... , 

COMMODORE 128 MODE 
MEMORY MAP 

C128 
RAM 

VICBIHlAP .. -
-- vlcBli·M.-\p---

CaIor (Vml2 

Aese,vod 10' 
func;loan Kr}' 

Sotl"". 

ilnerVl!(lIo' 
fQletgn l.ng 

Sl'Slem$ 

~K 
Al>!4Iule 
v .. ~1JIts 
~K 

DOS /VSf' 
V.'~,"" 

CP/ M Re$el 

"" func;Ilon .., 
Bul~ 

Spr". 
DeliMoan ,,-
RS·232 
OoJlpu' 
Bul~ 

RS-232 
I",,", 
~,~ 

_ip!'I~~!~) __ 
Cn~lle ilull.' 

MO<'II101 & Ker~1 
~NoM. 
Va'~,"" 

~K 
Run·T ..... 

St .. ~ 

'" "" .,-
(VIII, II 

BoaSic RAM coo. 
-~--------~ 

I(erl\llTlbItS 
----------~ 

IndrrlCtS 

,,",~RA Iil Coae 
- - ------~--

B .. ,, & Morutor 
InPIII Buller 

~ _ ~Y!'~_ S~or:~_ ~ _ 
_ 8.l_,,!: ~§ ~U~~_ ~ 

f iliJFFeR 

l(er!\il Z P ----------8.lSlO Z P 
---- - ~-----

• 
C128 
ROM oro---"''''----

364 APPENDIX H-Memory Map 

" .. 

COMMODORE 64 MODE 
MEMORY MAP 

C64 
Carlridges C64 

0400 ~~ ~ ~~~ - ----------------

0000 ----------------- - - --



APPENDIX I 
CONTROL AND 
ESCAPE CODES 

Control Codes 

Key 
CHR$ Sequence 

CHR$(2) CTRLB 
CHR$(5) CTRL 21CTRL E 

CHR$(7) CTRLG 
CHR$(8) CTRLH 

CHR$(9) CTRLI 

CHR$(lO) CTRLJ 

CHR$(11) CTRL K 

CHR$(12) CTRL L 

CHR$(13) CTRLM 

CHR$(14) CTRLN 

CHR$(1S) CTRLO 
CHR$(17) CRSR DOWNICTRL 0 

CHR$(18) CTRL9 

CHR$(19) HOME/CTRL S 

CHR$(20) DEUCTRL T 

FuncllOn 

Underline (SO) 
Set character color to 
white (40) and (80) 
Produce bell tone 
Disable character set 
change 
Enable character set 
change 
Move cursor to next sel 
tab position 
Send a carriage return 
with line feed. 
Send a line feed 
Enable character set 
change 
Disable character mode 
change 
Send a carriage return and 
line feed to the computer 
and enter a line of BASIC 
Set character set 10 upperl 
lowercase 
Turn flash on (SO) 
Move the cursor down one 
row 
Cause characters to be 
printed In reverse field 
Move the cursor to the 
home position (top left) of 
the display (the current 
window) 
Delete last character 
typed and move all char-
acters to the right of the 
deleted character one 
space to the left 

NOTE (40) ... 40 column screen only 
(80). . 80 column screen only 

365 APPENDIX I -Control and Escape Codes 

Effective 
in 

Mode: 
C64 C128 



Effective 
in 

Key Mode: 
CHR$ sequence Function C64 C128 

CHR$(24) CTRLX Tab set/clear 
CHR$(27) ESC'CTRL[ Send an ESC character 
CHR$(28) CTRL 3iCTRLI Set character color to red 

(40) and (80) 
CHR$(29) CRSR ICTRL I Move cursor one column 

lathe right 
CHR$(30) CTRL6ICTAL Set character color to 

green (40) and (80) 
CHR$(34) Print a double quote on 

screen and place editor In 
quote mode 

CHR$(129) C' 1 Set character color to 
orange (40); dark purple 
(80) 

CHR$(130) Underline off (80) 
CHR$(131) Run a program. This CHR$ 

code does not work In 
PRINT CHR$ (131), but 
works from keyboard 
buffer 

CHR$(133) F1 Reserved CHA$ code for 
Fl key 

CHR$(134) F3 Reserved CHR$ code for 
F3key 

CHR$(135) F5 Reserved CHR$ code for 
FSkey 

CHR$(136) F7 Reserved CHR$ code for 
F7key 

CHR$(137) F2 Reserved CHR$ code for 
F2key 

CHR$(138) F4 Reserved CHR$ code for 
F4 key 

CHR$(139) F6 Reserved CHR$ code for 
F6key 

CHR$(140) F8 Reserved CHR$ code for 
F8key 

CHR$(141) SHIFT RETURN Send a carralge return and 
line feed without entering 
a BASIC line 

CHR$(142) Setlhe character set 10 
uppercase/graphic 

CHR$(143) Turn flash off (80) • 

NOTE. (40) . . 40 column screen only 
(80) . . . 80 column screen only 

366 APPENDIX I-Control and Escape Codes 



CHR$ 
Key 

Sequence 

CHR$('44) CTRL, 

CHR$('45) CRSR UP 

CHR$('46) CTRLO 

CHR$('47) HOME 

CHR$('48) INST 

CHR$('49) ( ' 2 

CHR$('50) ( ' 3 

CHR$('5') ( '4 

CHR$('52) ( ' 5 

CHR$('53) ( ' 6 

CHR$('54) ( , 7 

CHR$(,55) ( ' 8 

CHR$( '56) CTRL5 

CHR$('57) CRSR LEFT 

CHR$('58) CTRL4 

Function 

Set character color to 
black (40) and (80) 
Move cursor or printing 
position up one row 
Terminate reverse field 
display 
Clear the window screen 
and move the cursor to the 
top left position 
Move character from cur· 
sor position end of line 
right one column 
Set character color to 
brown (40): dark yellow 
(80) 
Set character color 10 light 
red (40) and (80) 
Set character color to dark 
grey (40) dark cyan (80) 
Set character color to 
medium grey (40) and (80) 
Set character color to light 
green (40) and (80) 
Set character color to light 
blue (40) and (80) 
Set character color to light 
grey (40) and (80) 
Set character color to 
purple (40) and (80) 
Move cursor left by one 
column 
Set character color to 
cyan (40): light cyan (80) 

NOTE: (40) ... 40 column screen only 
(80) .. 80 column screen only 

367 APPENDIX I-Control and Escape Codes 

Ef fective 
In 

Mode 
C64 C,28 

• 

• 

• 

• 



Escape Codes Following are key sequences for the ESCape functions available on 
the Commodore 128. ESCape sequences are entered by pressing 
and releasing the "ESC" key. followed by pressing the key listed 
below 

ESCAPE FUNCTION 

Cancel quole and insert mode 

Erase to end of current line 
Erase to start of current line 
Clear 10 end of screen 

Move to start of current line 
Move to end of current line 

Enable auto-insert mode 
Disable autO-Insert mdtle 

Delete current line 
Insert line 

Set defauillab stop (8 spaces) 
Clear all tab stops 

Enable scrolling 
Disable scrolling 

Scroll up 
Scroll down 

Enable bell (by control-G) 
Disable bell 

Set cursor to non-flashing mode 
Set cursor to flashing mode 

Set bottom of screen window at cursor position 
Set top of screen window at cursor position 

Swap 40/80 column display output deVice 

ESCAPE KEY 

ESCC 

ESCQ 
ESCP 
ESC@ 

ESCJ 
ESCK 

ESCA 
ESCO 

ESCD 
ESCI 

ESCY 
ESCZ 

ESC L 
ESCM 

ESCV 
ESCW 

ESCG 
ESCH 

ESCE 
ESCF 

ESCB 
ESCT 

ESCX 

The following ESCape sequences are valid on an 80-column screen 
only. (See Section a for information on uSing an aO·column screen.) 

Change to underlined cursor 
Change to block cursor 

Set screen to reverse video 
Return screen to normal (non reverse video) slate 

NOTE (40) ... 40 column screen only 
(80) ... 80 column screen only 

3( APPENDIX I-Control and Escape Codes 

ESCU 
ESCS 

ESCR 
ESCN 



APPENDIX J 
MACHINE 
LANGUAGE 
MONITOR 

Introduction 

KEYWORD 

ASSEMBLE 

COMPARE 

DISASSEMBLE 
Fill 
GO 

HUNT 

JUMP 
LOAD 
MEMORY 

REGISTERS 

SAVE 

TRANSFER 

VERIFY 
EXIT 
(peflod) 
(greater tt'lan) 
(semicolon) 
(a l slgn) 

Commodore 128 has a built-In machine language monitor program 
which lets the user write and examine machine language programs 
easi ly. Commodore 128 MONITOR Includes a machine language 
mon itor. a mini-assembler and a disassembler. The b Uill-in monitor 
works only in C128 mode: either 40 column or 80 column. 

Machine language programs wr itten using Commodore 128 MONI· 
TOR can fUn by themselves or be used as very fast subroullnes for 
BASIC programs since the Commodore 128 MONITOR has the abil­
i ty to coexist peacefully with BASIC. 

Care must be taken to position the assembly language programs in 
memory so the BASIC program does not overwrite them. 

To enter the monitor from BASIC, type: 

MONITOR RETURN 

Summary of Commodore 128 Monitor Commands 

FUNCTION 

Assembles a hne 01 8502 code 

Compares two sectIOns 01 memory and reporls 
dltterel'lCes 
Disassembles a hne or hnes of 8502 code 
FillS a range ot memory with the speclfled byte 
$tarlS e~ecutlon at the specl t led address 

HunlS Ihrough memory Wllhln a specified range 
for all occurrences of a set ot bytes 
Jumps 10 the subroutine 
Loads a rile trom tape or disk 
Displays the he~adeclmal values 01 memory 
locatlOfls 
Displays the 8502 r6gISlers 

Saves 10 tape or dISk 

Translers code Irom one section 01 memory to 
another 
Compares memory with tape or disk 
EXits Commodore t 28 MONITOR 
Assembles a line 01 8502 code 
Modilies memory 
Modlt les 8502 register displays 
Displays disk status. sends disk command. diS· 
plays dueclory 
dlskstalus 
disk command 
disk catalog 

A 
C 

D 
F 
G 
H 

H 

J 
L 
M 

R 
S 

T 

V 
X 

> 

@ 

FORMAT 

(slarLaddress) (opcode) [operandi 
(SlarLaddress) (end..address) (new_slar L ad· 
dress) 

[(SIarLaddress) (encLaOdressll 
(SIarLaddress) (encLaddress) (byte) 
[address[ 
(SIarUKJdress) (encLaddress) (bytel) 
I(byle_n) I 

(slarLaddress) (encLaddreSS ) (ascI15tflng) 

[addressl 
·(Illename)" I.(devlce_f) [,(lOacladdress) II 

[(slarLaddress) [end..addressll 

(illename)" ,(deVice_I) (starLaddress) 
(lasLad<jress + 1) 
(starLaOdress) (ena..adClreSS) (new_starLaCl· 
Clress) 

' ( il lename)" [ .(devlcej ) [. ( toacLaddress ) II 

@[devlce_,j 
@[devlce_'I,(command..slllng)r 
@[deVlce_'I.S[[(dllve)1 (tile_spec) 11 

NOTES ( ) enclose reqUlled parameters 
I I enclose opllooal parameters 

369 APPENDIX J-Machine Language Monitor 



The Commodore 128 displays 5-digit hexadecimal addresses within 
the machine language monitor. Normally, a hexadecimal number is 
only four digits, representing the allowable address range. The extra 
left-most (high order) digit specifies the BANK configuration (at the 
time the given command is executed) according to the following 
memory configuration table: 
O_RAM 0 onl~ 
1-RAM 1 onl1 
2_RAM 2 onl~ 
3-RAM 3 onl1 
'_INT ROM. RAM 0. 110 
5-INT ROM, RAM 1. 110 
6-INT ROM. RAM 2, I/O 
7-INT ROM. RAM 3, I/O 

a-EXT ROM, RAM 0. 110 
9-EXT ROM, RAM 1. 110 
A-EXT ROM, RAM 2, UO 
8 _EXT ROM. RAM 3. UO 
C-KERNAL + INT (10). RAM O. 110 
D-KERNAL + EXT (10). RAM 1. 110 
E-KERNAL + BASIC, RAM O. CHAR ROM 
F-KERNAL + BASIC, RAM 0, 110 

Summary of Monitor Field Descriptors 

The following designators precede monitor data fields (e.g., memory 
dumps). When encountered as a command, these designators 
instruct the monitor to alter memory or register contents using the 
given data. 

(period) precedes lines of disassembled code. 
) (righlangle) precedes lines of a memory dump. 

(semicolon) precedes line of a register dump. 

The following designators precede number fields (e.g., address) and 
specify the radix (number base) of the value. Entered as commands, 
these designators instruct the monitor simply to display the given 
value in each of the four radices. 

(null) (default) precedes hexidecimal values. 
$ (dollar) precedes hexidecimal (base·16) values. 
+ (pluS) precedes decimal (base-10) values. 
& (ampersand) precedes octal (base-8) values_ 
% (percent) precedes binary (base·2) values. 

The following characters are used by the monitor as field delimiters 
or line terminators (unless encountered within an ASCII string). 

(space) delimiter-separates two fields. 
(comma) delimiter-separates two fields. 
(colon) terminator-logical end of line. 

? (question) terminator-logical end of line. 

370 APPENDIX J-Machine Language Monllor 



Commodore 128 
Monitor 
Command 
Descriptions 

Except as noted earlier, there are no changes at this lime to the func­
tionality of the MONITOR commands. Please note however that any 
number field (e.g. addresses. device numbers. and data bytes) may 
be specified as a based number. This affects the operand field of the 
ASSEMBLE command as well. Also note the addition of the directory 
syntax to the disk command. 

As a further aid to programmers. the Kernal error message facI li ty 
has been automatically enabled while in the Monitor ThiS means the 
Kernal will display ' I/O ERROR /1' and the error code. should there be 
any fai led 110 attempt from the MONITOR. The message facility is 
turned off when exiting the MONITOR. 

COMMAND' A 
PURPOSE: Enter a line of assembly code. 
SYNTAX: A (address) (opcode mnemonic) (operand) 

(address) 

(opcode 
mnemonic) 

(operand) 

A number indicating the location 
in memory to place the opcode. 

A standard MOS technology 
assembly language mnemoniC. 
e.g .. LOA. STX. ROA. 
The operand. when required . can 
be any of the legal addressing 
modes. 

A RETURN is used to indicate the end of the assembly line. If there 
are any errors on the line. a question mark is displayed to Indicate an 
error, and the cursor moves to the next line. The screen editor can 
be used 10 correct the error(s) on that line. 

EXAMPLE 
.A01200 LOX #$00 
.A01202 

NOTE: A period (.) is equal 10 the ASSEMBLE command 

EXAMPLE: 
.02000 LDA #$23 

371 APPENDIX J-Machine language Momlor 



COMMAND: C 
PURPOSE: Compare two areas of memory. 
SYNTAX: C (address 1) (address 2) (address 3) 

COMMAND: 0 

(address 1) A number indicating the start 
address of the area 01 memory to 
compare against 

(address 2) A number Indicating the end 
address of the area of memory to 
compare against . 

(address 3) A number indicating the start 
address of the other area 01 mem­
ory to compare with. Addresses 
that do not agree are printed on 
the screen. 

PURPOSE: Disassemble machine code into assembly language 
mnemonics and operands. 

SYNTAX: 0 [(address)][(address2)] 

(address) A number set t ing the address to 
starllhe disassembly. 

(address 2) An opllonal ending address of 
code to be disassembled. 

The format of the disassembly differs slightly from the Input lormat of 
an assembly. The difference is thaI the first character of a disassem­
bly is a period rather than an A (for readability), and the hexidecimal 
of the code is listed as well. 

A disassembly listing can be modified using the screen editor. Make 
any changes 10 the mnemonic or operand on the screen, then hit the 
carriage return. This enters the line and calls the assembler for fur­
ther modifications. • . 
A disassembly can be paged. Typing a 0 (RETURN) causes the next 
page of disassembly to be displayed. 

EXAMPLE: 
030003003 

.03000A900 

.03002 FF 

.030030028 

LOA H$OO 
??? 
8NE $3030 

372 APPENDIX J-Machine Language Moflilor 



COMMAND: F 
PURPOSE: Fill a range of locations with a specified byte. 

F (address 1) (address 2) (byte) SYNTAX: 

<address 1) The firsllocalion to fill with the 
(byte) . 

(address 2) The last location to fill with the 
(byte) . 

(byte value) A 1- or 2-dlgit hexadecimal num­
ber to be written. 

This command is useful for initializing data structures or any other 
RAM area. 

EXAMPLE: 

F04000518EA 

Fill memory locations tram $0400 to $0518 with $EA (a 
NOP instruction). 

COMMAND: G 
PURPOSE: Begin execution of a program at a specified address. 
SYNTAX: G [(address)] 

(address) An address where execution is to 
star1. When address is left out, 
execution begins at the current 
PC. (The current PC can be 
viewed using the R command.) 

The GO command restores all registers (displayable by using the R 
command) and begins execution at the specified starling address. 
Caution is recommended in using the GO command. To return to 
Commodore 128 MONITOR mode after executing a machine lan­
guage program, use the BRK instruction at the end of the program. 

EXAMPLE: 

G 140C 

Execution begins at location $140C. 

373 APPENDIX J-Machine language Monitor 



COMMAND: H 
PURPOSE: Hunt through memory within a specified range for all 

occurrences 01 a set of bytes. 
SYNTAX: H (address 1) (address 2) (data) 

EXAMPLE: 

(address 1) Beginning address of hunt 
procedure. 

(address 2) Ending address of hunt 
procedure. 

(data) Data set to search for data may 
be hexadecimal or an ASCII 
string. 

H AOOO A 101 A9 FF 4C 

Search for data $A9, $FF, $4C, 
from AOOO to A 101. 

H 20009800 'CASH' 

Search for the alpha string "CASH ", 

COMMAND: L 
PURPOSE: Load a file from cassette or disk. 
SYNTAX: L ("file name")[,(deviee) [,alt load address~ 

( "file name") Any legal Commodore 128 file 
name. 

(device) A number indicating the device to 
load from. 1 is cassette. 8 is disk 
(or 9, A, etc,). 

[all load address] Option to load a file to a speci-
fied address. 

The LOAD command causes a file to be loaded into memory. The 
starting address is contained in the first two bytes of the disk file (a 
program file). In other words. the LOAD command always loads a file 
into the same place it was saved from. This is very important in 
machine language work, since few programs are completely relocat· 
able. The file is loaded into memory until the end of file (EOF) is 
found. 

EXAMPLE: 

L "PROGRAM",8 Loads 1he file named PROGRAM from the 
disk. 

374 APPENDIX J-Machine Language Monllor 

-



COMMAND: M 
PURPOSE: To display memory as a hexadecimal and ASCII dump 

within the specified address range. 
SYNTAX M [ (address 1 )j[(address 2)J 

(address 1> First address 01 memory dump. 
Optional. If omitted, one page is 
displayed. The first byte is the 
bank number to be displayed, the 
next four bytes are the first 
address to be displayed. 

(address 2) Last address of memory dump. 
Optional. If omitted, one page is 
displayed. The first byte is the 
bank number to be displayed, the 
next four bytes are the ending 
address to be displayed. 

Memory is displayed in the following format: 

) 1A048 41 E7 00 AA AAOO 98 56 45 :A!. ' .. VE 

Memory content may be edited using the screen editor. Move the 
cursor to the data to be modified, type the desired correction and hit 
(RETURN>. If there is a bad RAM location or an attempt to modify 
ROM has occurred, an error flag I?) is displayed. An ASCII dump of 
the data is displayed in REVERSE Ito contrast with other data dis· 
played on the screen) to the right of the hex data. When a character 
is not pr intable, it is displayed as a reverse period (II). As with the dis­
assembly command, paging down is accomplished by typing M and 
(RETURN) . 

EXAMPLE: 
M 21COO 21C1O 

)21COO 41 E7 00 AAAA 00 98 56 45 :AI.' .. VE 
)21C08 42 43 02 AZ AD 11 945744 :BC. ' .. WD 
)21C1045E700DFFE07064647 :E' ' .. EF 

Note: The above display is produced by the 40-column editor. 

375 APPENDIX J-Machine language MOnttor 



COMMAND: R 
PURPOSE: Show important 6502 registers. The program status 

register, the program counter. the accumulator, the 
X and Y index registers and the stack pointer are 
displayed 

SYNTAX: R 

EXAMPLE: 

R 
PC SR AC XR YR SP 

01002 01 02 03 04 F6 

NOTE: : (semicolon) can be used to modify register displays in 
the same fashion as > can be used to modify memory registers. 

COMMAND: 
PURPOSE: 
SYNTAX: 

S 
Save the contents of memory onto tape or disk, 
S ("file name"),(device),(address 1 >. 

(address 2) 

("file name") Any legal Commodore 128 
file name. To save the data 
the file name must be 
enclosed in double quotes. 
Single quotes cannot be 
used. 

(device) A number indicating on 
which device the file is to be 
placed. Cassette is 01; disk 
is 08. 09, etc. 

(address 1) Star l ing address of memory 
to be saved. 

(address 2) Ending address of memory 
to be saved + 1. All data up 
to, but not including the byte 
of data at this address. is 
saved. 

The file created by thiS command is a program file. The first two 
bytes contain the starting address (address 1) of the data. The file 
may be recalled, using Ihe L command, 

EXAMPLE: 

S "GAME" ,8,0400,OBFF 

Saves memory from $0400 10 $OBFF onlo disk, 

376 APPEN DIX J-Machine Language Monitor 



COMMAND 
PURPOSE 

SYNTAX: 

T 
Transfer segments of memory from one memory 
area to another, 
T (address 1) (address 2) (address 3) 

(address 1 ) 

(address 2) 

(address 3) 

Starling address 01 data to 
b"e moved 
Ending address 01 data to be 
moved 
Starting address of new loca­
tion where data will be 
moved 

Data can be moved from low memory to high memory and vice 
versa. Additional memory segments of any length can be moved 
forward or backward. An automatic "compare" IS performed as 
each byte IS transferred. and any differences are listed by address. 

EXAMPLE. 

T 1400 1600 1401 

Shifts data from $1400 up to and Including $1600 one byte 
higher in memory. 

COMMAND: 
PURPOSE: 

SYNTAX. 

V 
Verify a file on cassette or disk with the memory 
contents. 
V nile name')[,(devlce)li,aI1 start address) 

<"file name") 

(device) 

[alt start 
address) 

Any legal Commodore 128 
file name. 
A number indicating which 
device the file is on: cassette 
IS 01. dIsk IS 08. 09. etc. 
Option to start verifIcatIon 
at this address. 

The verify command compares a file to memory contents. The 
Commodore 128 responds wilh VERIFYING. If an error IS found the 
word ERROR is added: jf the file is successfully verified the cursor 
reappears. 

EXAMPLE: 

V "WORKLOAD", 08 

377 APPENDIX J-Machine Language Monitor 



COMMAND 
PURPOSE: 
SYNTAX 

COMMAND: 
PURPOSE 

SYNTAX 

COMMAND: 
PURPOSE: 
SYNTAX' 

X 
EXIt to BASIC 
X 

) (greater than) 
Can be used to set one to eight memory locations 
at a time 
) (address) (data byte) 1 (data byte 2 ... 8) 

(address) 
(data byte 1) 
(data byte 2 . 

@ (at sign) 

First memory address to set. 
Data to be put at address. 

. 8) 
Data to be placed in the suc­
cessive memory locations 
followIng the first address 
(optional) with a space pre­
ceding each data byte. 

Can be used to display the disk status. 
@ [< unitN ) ], (diSk cmd string> 

(unit II) DeVice unit number 
(opllonal). 

(disk cmd string) String command to disk. 

NOTE: @ alone gives the status of the disk drive. 

EXAMPLES. 

@ checks disk status 

00, OK, 00, 00 

@.I Initializesdnve8 

378 APPENDIX J-Machine Language MonUor 

- ' 



APPENDIX K Note: The abbreviations below operate in uppercase/graphics mode. 
BASIC 7 .0 Press the letter key{s) indicated, then hold down the SHIFT key 
ABBREVIATIONS and press the letter key following the word SHIFT. 

KEYWORD ABBREVIATION 
ABS A SHIFTB 
APPEND A SHIFTP 
ASC A SHIFTS 
ATN A SHIFTT 
AUTO A SHIFTU 
BACKUP BA SHIFTC 
BANK B SHIFT A 
BEGIN B SHIFTE 
BEND BE SHIFTN 
BlOAD B SHIFT l 
BOOT B SHIFTO 
BOX none 
BSAVE B SHIFT S 
BUMP B SHIFT U 
CATALOG C SHIFT A 
CHAR CH SHIFT A 
CHR$ C SHIFTH 
CIRCLE C SHIFT I 
CLOSE Cl SHIFTO 
ClR C SHIFT l 
CMD C SHIFT M 
COllECT COll SHIFT E 
COLI NT none 
COLLISION COL SHIFTl 
COLOR COL SHIFTO 
CONCAT C SHIFTO 
CONT none 
COpy CO SHIFTP 
COS none 
DATA o SHIFT A 
DEC none 
DClEAR DCl SHIFTE 
DCLOSE o SHIFTC 
DEFFN none 
DELETE DE SHIFT l 
DIM o SHIFTI 
DIRECTORY DI SHIFTR 
DlOAD D SHIFTl 
DO none 
DOPEN o SHIFT 0 

- 379 APPENDIX K-BASIC 7.0 Abbre~ iations 



KEYWORD ABBREVIATION 
DRAW D SHIFTR 
DSAVE D SHIFT S 
DVERIFY D SHIFTV 
El none 
END none 
ENVELOPE E SHIFT N 
ER none 
ERR$ E SHIFT R 
EXIT EX SHIFT! 
EXP E SHIFTX 
FAST none 
FETCH F SHIFT E 
FilTER F SHIFT I 
FOR F SHIFTO -
FRE F SHIFT R 
FNXX none 
GET G SHIFTE 
GETKEY GETK SHIFTE 
GETH none 
GOSUB GO SHIFTS -
G064 none 
GOTO G SHIFTO 
GRAPHIC G SHIFTR 
GSHAPE G SHIFTS 
HEADER HE SHIFT A 
HELP 
HEX$ H SHIFTE 
IF ... GOTO none 
IF ... THEN ... ELSE none 
INPUT none 
INPUTH I SHIFT N 
INSTR IN SHIFT S 
INT none 
JOY J SHIFTO 
KEY K SHIFTE 
lEFT$ lE SHIFT F 
lEN none 
lET l SHIFT E -
LIST l SHIFT! 
lOAD L SHIFTO 
LOCATE lO SHIFTC 
LOG none 
lOOP LO SHIFTO -

380 APPENDIX K-BASIC 7.0 Abbreviations 



KEYWORD 
MID$ 
MONITOR 
MOVESHAPE 
MOVSPR 
NEW 
NEXT 
ON ... GOSUB 
ON ... GOTO 
OPEN 
PAINT 
PEEK 
PEN 
PI 
PLAY 
POKE 
POS 
POT 
PRINT 
PRINH 
PRINT USING 
PUDEF 
RBUMP 
RCLR 
RDOT 
READ 
RECORD 
REM 
RENAME 
RENUMBER 
RESTORE 
RESUME 
RETURN 
RGR 
RIGHT$ 
RLUM 
RND 
RREG 
RSPCOLOR 
RSPPOS 
RSPR 
RSPRITE 
RUN 
RWINDOW 

381 APPEN D1X K-BASIC 7.0 Abbreviations 

ABBREVIATION 
M SHIFT] 

MO SHIFTN 
none 

M SHIFTO 
none 

N SHIFT E 
ON ... GO SHIFT S 

ON . . . G SHIFTO 
o SHIFT P 
P SHIFT A 

PE SHIFT E 
P SHIFT E 

none 
P SHIFT L 

PO SHIFTK 
none 

P SHIFTO 
? 

P SHIFT R 
?US SHIFT! 

P SHIFT U 
RB SHIFTU 

R SHIFTC 
R SHIFT D 

RE SHIFT A 
R SHIFT E 

none 
RE SHIFT N 

REN SHIFTU 
RE SHIFT S 

RES SHIFT U 
RE SHIFTT 

R SHIFTG 
R SHIFT! 

none 
R SHIFTN 
R SHIFT R 

RSP SHIFTC 
R SHIFTS 

none 
RSP SHIFT R 

R SHIFT U 
R SHIFTW 



KEYWORD ABBREVIATION 
SAVE S SHIFT A 
SCALE SC SHIFT A 
SCNCLR S SHIFTC 
SCRATCH SC SHIFT R 
SGN S SHIFTG 
SIN S SHIFT I 
SLEEP S SHIFT L 
SLOW none 
SOUND S SHIFTO 
SPC( none 
SPRCOLOR SPR SHIFTC 
SPRDEF SPR SHIFTD 
SPRITE S SHIFT P 
SPRSAV SPR SHIFTS 
SQR S SHIFTO 
SSHAPE S SHIFTS 
STASH S SHIFTT 
STatus none 
STEP ST SHIFT E 
STOP ST SHIFTO -
STR$ ST SHIFTR 
SWAP S SHIFTW 
SYS none 
TAB( T SHIFT A 
TAN none 
TEMPO T SHIFT E 
TI none 
TI$ none 
TO none 
TRAP T SHIFT R 
TROFF TRO SHIFTF 
TRON TR SHIFTO 
UNTIL U SHIFTN 
USR U SHIFTS 
VAL none 
VERIFY V SHIFT E 
VOL V SHIFTO 
WAIT W SHIFT A 
WHILE W SHIFTH 
WIDTH WI SHIFT D 
WINDOW W SHIFT! 
XOR X SHIFTO 

382 APPENDIX K- BASIC 7.0 Abbreviations 



APPENDIX L 
DISK COMMAND 
SUMMARY 

This appendix lists the commands used for disk operation in C128 
and C64 modes on the Commodore 128. For detailed information on 
any of these commands, see Chapter V, BASIC 7.0 Encyclopedia. 
Your disk drive manual also has information on disk commands. 

The new BASIC 7.0 commands can be used only in C128 mode. All 
BASIC 2.0 commands can be used in both C128 and C64 modes. 

Command Use Basic 2.0 Basic 7.0 
APPEND Append data to file .-
BLOAD Load a binary file starting al .-

the specified memory 
location 

BOOT Load and execute program .-
BSAVE Save a binary file from the .-

specified memory location 
CATALOG Display d irectory conlents of .-

disk on screen· 
CLOSE Close logical disk file .-
CMD Redirect screen output 10 .-

disk file 
COLLECT Free inaccessible disk .-

space' 
CONCAT Concatenate two data liles' .-
COpy Copy files between devices ' .-
DCLEAR Clear all open channels on .-

disk drives 
DCLOSE Close logical disk file .-
DIRECTORY Display directory 01 contents .-

of disk on screen ' 
DLOAD Load a BASIC program hom .-

disk 
DOPEN Open a disk fi le for a read .-

and/or write operation 
DSAVE Save a BASIC program to .-

disk 
DVERIFY Verify program in memory .-

against programs on disk 
GEH Receive input from open disk 

lile 
HEADER Format a disk' 
LOAD Load a file from disk .-
OPEN Open a lile for input or output .-
PRINT! Output a data to file .-

• Although there IS no Single eQuivalent command IOf this lunctlon In BASIC 2 O. there IS an 
eQUivalent multi-command Instruction. See your dlskdllve manual for these BASIC 2.0 
convenllons 

383 APPENDIX L-Oisk Command Summary 



Command Us. Basic 2.0 Basic 7.0 
RECORD Position relative file pointers' v' 

RENAME Change name of a file on v' 

disk' 
RUN filename Execute BASIC program from v' 

disk 
SAVE Store program In memory to v' 

disk 
VERIFY Verify program In memory v' 

against program on disk 

• Allhough there IS nosmgte equivalent command In BASIC 2.0. there IS an equivalent mull!· 
command mSlructlOn See your dISk drive manual for these BASIC 2 0 convenllons 

384 APPENDIX l-Oisk Command Summary 



GLOSSARY 

GLOSSARY 

This glossary provides brief definitions of frequently used computing 
terms. 

Acoustic Coupler or Acoustic Modem: A device that converts 
digital signals to audible tones for transmission over telephone 
lines. Speed is limited to about 1,200 baud, or bits per second 
(bps). Compare direct-connect modem. 

Address: The label or number identifying the register or memory 
location where a unit of information is stored. 

Alphanumeric: Letters , numbers and special symbols found on the 
keyboard, excluding graphic characters. 

ALU: Arithmetic Logic Unit. The pari of a Central Processing Unit 
(CPU) where binary data is acted upon. 

Animation: The use of computer instructions to simulate motion of 
an object on the screen through gradual , progressive 
movements. 

Array: A data-storage structure in which a series of re lated con­
stants or variables are stored in consecutive memory locations. 
Each constant or var iable contained in an array is referred to as 
an element. An element is accessed using a subscript. See 
Subscript . 

ASCII: Acronym for American Standard Code for Information Inter­
change. A seven-bit code used to represent alphanumeric 
characters. It is useful for such things as sending information 
from a keyboard to the computer, and from one computer to 
another. See Character String Code. 

Assembler. A program that translates assembly· language instruc­
tions into machine-language instructions. 

3B5 GLOSSARY 



Assembly language: A machine-oriented language in which mne­
monics are used to represent each machine-language instruc­
tion. Each CPU has its own specific assembly language. See 
CPU and machine language. 

Assignment Statement: A BASIC statement that sets a variable, 
constant or array element to a specific numeric or string value. 

Asynchronous Transmission: A scheme in which data characters 
are sent at random time intervals. limits phone·line transmis­
sion to about 2,400 baud (bps). See Synchronous Transmission. 

Attack: The rate at which the volume of a musical note rises from 
zero to peak volume. 

Background Color: The color of the porlion of the screen that the 
characters are placed upon. 

BASIC: Acronym for Beginner's All-purpose Symbolic Instruction 
Code. 

Baud: Serial-data transmission speed. Originally a telegraph term, 
300 baud is approximately equal to a transmission speed of 30 
bytes or characters per second. 

Binary: A base·2 number system. All numbers are represented as a 
sequence of zeros and ones. 

Bit: The abbreviation for Binary digiT. A bit is the smallest unit in a 
computer. Each binary digit can have one of two values, zero or 
one. A bit is referred to as enabled or " on" If it equals one. A bit 
is disabled or " off " if it equals zero. 

Bit Control: A means of transmitting serial data in which each bit 
has a significant meaning and a single character is surrounded 
with start and stop bits. 

Bit Map Mode: An advanced graphic mode in the Commodore 128 
in which you can control every dot on the screen. 

Border Color: The color of the edges around the screen. 

Branch: To jump to a section of a program and execute I\. GOTO and 
GOSUB are examples of BASIC branch instructions. 

386 GLOSSARY 



Bubble Memory: A relatively new type of computer memory, it uses 
tiny magnetic "pockets" or "bubbles" to store data. 

Burst Mode: A special high speed mode of communication 
between a disk drive and a computer, in which information is 
transmitted at many times normal speed. 

Bus: Parallel or serial lines used to transfer signals between 
devices. Computers are often described by their bus structure 
(Le .. S-100-bus computers, etc.). 

Bus Network: A system in which all stations or computer devices 
communicate by using a common distribution channel or bus. 

Byte: A group of eight bits that make up the smallest unit of address· 
able storage in a computer. Each memory location in the Com­
modore 128 contains one byte of information. One byte is the 
unit of storage needed to represent one character in memory. 
See Bit. 

Carrier Frequency: A constant signal transmitted between commu­
nicating devices that is modulated to encode binary 
information. 

Character: Any symbol on the computer keyboard that is printed on 
the screen. Characters include numbers. letters, punctuation 
and graphic symbols. 

Character Memory: The area in Commodore 128's memory which 
stores the encoded character patterns that are displayed on 
the screen. 

Character Set: A group of related characters. The Commodore 128 
character sets consist of : upper-case letters. lower-case letters 
and graphic characters. 

Character String Code: The numeric value assigned to represent a 
Commodore 128 character in the computer's memory. 

Chip: A miniature electronic circuit that performs a computer opera· 
tion such as graphics, sound and input/outpu t. 

Clock: The timing circuit for a microprocessor. 

387 GLOSSARY 



Clocking: A technique used to synchronize a sending and a receIv­
ing data-communications device that is modulated to encode 
binary information. 

Coaxial Cable: A transmission medium, usually employed in local 
networks. 

Collision Detection: A task performed in a mUltiple-access network 
to prevent two computers transmitting al the same time. 

Color Memory: The area in the Commodore 128's memory that 
controls the color of each location in screen memory. 

Command: A BASIC instruction used in direct mode to perform an 
action. See Direct Mode. 

Compiler: A program thatlranslates a high·levellanguage, such as 
BASIC, into machine language. 

Composite Monitor: A device used to provide a 40·column video 
display. 

Computer: An electronic, digital device that stores and processes 
information. 

Condition: Expression(s) between the words IF and THEN . evalu­
ated as either true or fa lse in an IF ... THEN statement. The 
condition IF ... THEN statement gives the computer the ability 
to make decisions. 

Coordinate: A single point on a grid having vertical (Y) and horizon­
tal (X) values. 

Counter: A variable used to keep track of the number of times an 
event has occurred in a program. 

CPU: Acronym for Central Processing Unit. The part of the com­
puter containing the circuits thaI control and perform the exe­
cution of computer instructions. 

Crunch: To minimize the amount of computer memory used to store 
a program. 

Cursor: The flashing square that marks the current location on the 
screen. 

388 GLOSSARY 



Data: Numbers, letters or symbols thaI are Input into the computer 
to be processed. 

Data Base: A large amount of data stored in a well·organized man­
ner. A data· base management system IS a program that allows 
access to the information. 

Data Link Layer. A logical portion of data communications control 
that mainly ensures that communication between adjacent 
devices is error free. 

Data Packet: A means of transmitting serial data in an efficient 
package that includes an error-checking sequence, 

Data Rate or Data Transfer Rate: The speed at which data is 
sent to a receiving computer-given in baud, or bits per 
second (bps). 

Datassette: A device used to store programs and data files sequen· 
tially on tape. 

Debug: To correct errors in a program. 

Decay: The rate at which the volume of a musical note decreases 
from its peak value to a mid-range volume called the sustain 
level. See Sustain. 

Decrement: To decrease an index variable or counter by a specific 
value. 

Dedicated Line or Leased Line: A special telephone line arrange­
ment supplied by the telephone company, and required by cer­
tain computers or terminals. whereby the connection is always 
established. 

Delay Loop: An empty FOR . .. NEXT loop that slows the execution 
of a program. 

Dial-Up Line: The normal switched telephone line that can be used 
as a transmission medium for data communications. 

Digital: Of or relating to the technology of computers and data com­
munications where all information is encoded as bits of 1 s or as 
that represent on or off states 

389 GLOSSARY 



Dimension: The property of an array that specifies the direction 
along an axis in which the array elements are stored. For exam­
ple, a two-dimensional array has an X-axis for rows and a Y-axis 
for columns. See Array. 

Direct Mode: The mode of operation that executes BASIC com­
mands immediately after the RETURN key is pressed. Also 
called Immediate Mode. See Command. 

Direct Connect Modem: Adevice that converts digital signals from 
a computer into electronic impulses for transmission over tele­
phone lines. Contrast with Acoustic Coupler. 

Disable: To turn off a bit, byte or specific operation of the computer. 

Disk Drive: A random access, mass-storage device that saves and 
loads files to and from a floppy diskette. 

Disk Operating System: Program used to transfer information to 
and from a disk_ Often referred to as a DOS. 

Duration: The length of time a musical note is played. 

Electronic Mail or E-Mail: A communications service for computer 
users where textual messages are sent to a central computer, 
or electronic "mail box," and later retrieved by the addressee. 

Enable: To turn on a bit , byte or specific operation of the computer. 

Envelope Generator. Portion of the Commodore 128 that produces 
specific waveforms (sawtooth. triangle, pulse width and noise) 
for musical notes. See Waveform. 

EPROM: A PROM thaI can be erased by the user, usually by expos· 
ing it to ultraviolet light. See PROM. 

Error Checking or Error Detection: Software routines that identify, 
and often correct, erroneous data. 

Execute: To perform the specified instructions in a command or 
program statement. 

Expression: A combination of constants, variables or array ele­
ments acted upon by logical, mathematical or relational opera­
tors that return a numeric value. 

390 GLOSSARY 



File: A program or collection of data treated as a unit and stored on 
disk or tape. 

Firmware: Computer instructions stored in ROM, as in a game 
cartridge. 

Frequency: The number 01 sound waves per second 01 a tone. The 
frequency corresponds to the pitch of the audible tone. 

Full-Duplex Mode: Allows two computers to transmit and receive 
data at the same time. 

Function: A predefined operation that returns a single value. 

Function Keys: The four keys on the far right of the Commodore 
128 keyboard. Each key can be programmed to execute a 
series of instructions. Since the keys can be SHIFTed, you can 
create eight different sets of instructions. 

GCR Format: Method of storing information on a disk; when used by 
1541 and 1571 , disk can read and write on GCR-formatted 
disks. 

Graphics: Visual screen images representing computer data in 
memory (Le., characters, symbols and pictures). 

Graphic Characters: Non-alphanumeric characters on the comput­
er's keyboard. 

Grid: A two-dimensional matrix divided into rows and columns. Grids 
are used to design sprites and programmable characters. 

Halt-Duplex Mode: Allows transmission in only one direction at a 
time; if one device is sending, the other must simply receive 
data until it's time for it to transmil. 

Hardware: Physical components in a computer system such as 
keyboard, disk drive and printer. 

Hexadecimal: Refers to the base·16 number system. Machine lan­
guage programs are of len written in hexadecimal notation. 

Home: The upper-left corner of the screen. 

Ie: Integrated Circuit. A silicon chip containing an electric circuit 

391 GLOSSARY 



made up of components such as transistors, diodes, resistors 
and capacitors. Integrated circuits are smaller, faster and more 
efficient than the individual circuits used in older computers. 

Increment: To increase an index variabte or counter with a specified 
value. 

Index: The variable counter within a FOR ... NEXT loop. 

Input: Data fed into the computer to be processed. Input sources 
Include the keyboard, disk drive, Datassette or modem. 

Integer. A whole number (i.e., a number containing no fractional 
part), such as 0, 1, 2, etc. 

Interface: The point of meeting between a computer and an exter­
nal entity, whether an operator, a peripheral device or a com­
munications medium. An interface may be physical, involving a 
connector, or logical, involving software. 

110: Input/output. Refers to the process of entering data into the 
computer, or transferring data from the computer to a disk 
drive, printer or storage medium 

Keyboard: Input component of a computer system. 

Kilobyte (K): 1,024 by1es, 

Local Network: One of several short·distance data communica· 
tions schemes typified by common use of a transmission 
medium by many devices and high·data speeds. Also called a 
Local Area Network, or LAN. 

Loop: A program segment executed repetitively a specified number 
of times. 

Machine Language: The lowest level language the computer under­
stands. The computer converts all high-level languages, such 
as BASIC, into machine language before executing any state­
ments. Machine language is written in binary form that a com· 
puter can execute directly. Also called machine code or object 
code. 

Matrix.: A two-dimensional rectangle with row and column values. 

392 GLOSSA.RY 



-
Memory: Storage locations inside the computer. ROM and RAM are 

two different types of memory. 

Memory location: A specific storage address in the computer. 
There are 131 ,072 memory locations (0-131 ,071) in the 
Commodore 128. 

M FM: A method of storing information on disks. Can be read by 
1541 and 1571 disk drives, but these drives cannot write disks 
in this formal. 

Microprocessor. ACPU that is contained on a single integrated 
circuit (IC). Microprocessors used in Commodore personal 
computers include the 6510, the 8502 and the Z80. 

Mode: A state of operation. 

Modem: Acronym for MOdulatorlDEModulalor. A device that trans­
forms digital signals from the computer into electrical impulses 
for transmission over telephone lines, and does the reverse for 
reception, 

Monitor: A display device resembling a television set but with a 
higher-resolution (sharper) image on the video screen. 

Motherboard: In a bus-oriented system, the board that contains the 
bus lines and edge connectors to accommodate the other 
boards in the system. 

Multi·Color Character Mode: A graphic mode that allows you to 
display four different colors within an 8 x 8 charac ter grid. 

Multi·Color Bit Map Mode: A graphic mode that allows you to dis­
play one of four colors for each pixel within an 8 x 8 character 
grid. See Pixel. 

Multiple·Access Network: A flexible system by which every station 
can have access to the network at all times: provisions are 
made for times when two computers decide to transmit at the 
same time. 

Null String: An empty character C' "). A character that is not yet 
assigned a character string code. Produces an illegal quantity 
error if used in a GET statement. 

393 GLOSSA.RY 



Octave: One full series of eight notes on the musical scale. 

Operating System: A bui lt-in program that controls everything your 
computer does, 

Operator. A symbol that tells the computer to perform a mathemati ­
cal , logical or relationa! operation on the specified variables, 
constants or array elements in the expression. The mathemati· 
cal operators are + , - , *, I and T . The relational operators are 
(, = , ), ( = , ) = and ( ). The logical operators are AND, OR 
NOT, and XOR. 

Order of Operations: Sequence in which computations are per­
formed in a mathematical expression. Also called Heirarchy of 
Operations. 

Parallel Port: A port used for transmission of data one byte at a time 
over multiple wires, 

Parity Bit: A 1 or 0 added to a group of bits that identifies the sum of 
the bi ts as odd or even. 

Peripheral: Any accessory device attached to the computer such 
as a disk drive, printer, modem or joystick. 

Pitch: The highness or lowness 01 a tone that is determined by the 
frequency of the sound wave. See Frequency. 

Pixel: Computer term for picture element. Each dot on the screen 
that makes up an image is called a pixel. Each character on the 
screen is displaced within an 8 x 8 grid of pixels. The entire 
screen is composed of a 320 x 200 pixel grid. In bit-map 
mode, each pixel corresponds to one bit in the computer's 
memory. 

Polling: A communications control method used by some computerl 
terminal systems whereby a "master" station asks many 
devices attached to a common transmission medium, in turn , 
whether they have information to send. 

Pointer: A register used to indicate the address of a location in 
memory. 

Port: A channel through which data is transferred to and from the 
CPU. An B·bit CPU can address 256 ports. 

394 GLOSSARY 



Printer: Peripheral device that outputs the contents of the comput­
er 's memory onto a sheet of paper. This paper is referred to as 
a hard copy. 

Program: A series of instructions that direct the computer to per­
form a specific task. Programs can be stored on diskette or 
cassette, reside in the computer's memory, or be listed on a 
printer. 

Programmable: Capable of being processed with computer 
instructions. 

Program line: A statement or series of statements preceded by a 
line number in a program. The maximum length of a program 
line on the Commodore 128 is 160 characters. 

PROM: Acronym for Programmable Read Only Memory. A semicon­
ductor memory whose contents cannot be changed. 

Protocol: The rules under which computers exchange information, 
including the organization of the units of data to be transferred. 

Random Access Memory (RAM): The programmable area of the 
computer's memory that can be read from and written to 
(changed). All RAM locations are equally accessible at any time 
in any order. The contents of RAM are erased when the com­
puter is turned off. 

Random Number: A nine-digit decimal number from 0.000000001 
to 0.999999999 generated by the RaNDom (RND) funcllon . 

Read Only Memory (ROM): The permanent portion of the comput­
er's memory. The contents of ROM locations can be read, but 
not changed. The ROM in the Commodore 128 contains the 
BASIC language interpreter. character·image patterns and por­
tions of the operating system. 

Regis ter: Any memory location in RAM . Each register stores one 
byte. A register can store any value between 0 and 255 in 
binary form. 

Release: The rate at which the volume of a musical note decreases 
from the sustain level to zero. 

395 GLOSSARY 



Remark: Comments used to document a program. Remarks are not 
executed by the computer, but are displayed in the program 
listing. 

Resolution: The density of pixels on the screen that determine the 
fineness of detail of a displayed image. 

RGBI Monitor: Red/Green/Bluelintensity. A high· resolution display 
device necessary to produce an 80·column screen format. 

Ribbon Cable: A group of attached parallel wires. 

Ring Network: A system in which all stations are linked to form a 
continuous loop or circle. 

RS·232: A recommended standard for electronic and mechanical 
specifications of serial transmission ports. The Commodore 
128 parallel user port can be treated as a serial port if ac­
cessed through software, sometimes with the addition of an 
interface device. 

Screen: Video display unit which can be either a television or video 
monitor. 

Screen Code: The number assigned to represent a character in 
screen memory. When you type a key on the keyboard, the 
screen code for that character is entered into screen memory 
automatically. You can also display a character by storing its 
screen code directly into screen memory with the POKE 
command. 

Screen Memory: The area of the Commodore 128's memory that 
contains the information displayed on the video screen. 

Serial Por t: A port used for serial transmission of data; bits are 
transmitted one bit after the other over a single wire. 

Serial Transmission: The sending of sequentially ordered data bits. 

Software: Computer programs (sets of instructions) stored on disk, 
tape or cartridge that can be loaded into random access mem­
ory. Software, in essence, tells the computer what to do. 

396 GLOSSARY 



Sound Interface Device (SID): The MaS 6581 sound synthesizer 
chip responsible for all the audio features of the Commodore 
128. See the Commodore 128 Programmer's Reference Guide 
for chip specifications. 

Source Code: A non-executable program wntten in a high· level lan­
guage. A compiler or assembler must translate the source code 
into an object code (machine language) that the computer can 
understand. 

Sprite: A programmable, movable, high-resolution graphic image. 
Also called a Movable Object Block (MOB). 

Standard Character Mode: The mode the Commodore 128 oper­
ates in when you turn it on and when you write programs. 

Start Bit: A bit or groupo! bits that identifies the beginning of a data 
word. 

Statement: A BASIC instruction contained in a program line. 

Stop Bit: A bit or group of bits that identifies the end of a data word 
and defines the space between data words. 

String: An alphanumeric character or series of characters sur· 
rounded by Quotation marks. 

Subroutine: An independent program segment separate from the 
main program that performs a specific task. Subroutines are 
called from the main program with the GOSUB statement and 
must end with a RETURN statement. 

Subscript: A variable or constant that refers to a specific element in 
an array by its position within the array. 

Sustain: The midranged volume of a musical note. 

Synchronous Transmission: Data communications using a syn­
chronizing, or clocking signal between sending and receiving 
devices. 

Syntax: The grammatical rules of a programming language. 

397 GLOSSARY 



Tone: An audible sound of specific pitch and waveform. 

Transparent: Describes a computer operation that does not require 
user intervention. 

Variable: A unit of storage representing a changing string or 
numeric value. Variable names call be any length, but only the 
'Irst two characters are stored by the Commodore 128. The first 
character must be a letter. 

Video Interface Controller (VIC): The MOS 6566 chip responsible 
for the 40-column graphics features of the Commodore 128. 
See the Commodore 128 Programmer's Reference Guide for 
chip specifications. 

Voice: A sound·producing component inside the SID chip. There are 
three voices within the SID chip so the Commodore 128 can 
produce three different sounds simultaneously. Each voice 
consists of a tone oscillar/waveform generator, an envelope 
generator and an amplitude modulator. 

Waveform: A graphic representation of the shape of a sound wave. 
The waveform determines some of the physical characteristics 
of the sound. 

Word: Number of bits treated as a single unit by the CPU. In an eight· 
bit machine. the word length is eight bits; in a 16·blt machine. 
the word length is 16 bits. 

398 GLOSSARY 



INDEX A 
Abbreviations- BASIC, 29, 33, 

379 
A8S function, 70, 305 
Add ition, 36 
ADM 3, 223 
ADS R, 131, 142 
All key, 91 
All mode, 223 
Animation, 109, 122 
APPEND, 235 
Arrays, 61, 62, 325 
ASe function, 69, 305 
ASCII character codes, 69, 355 
ASM, 199 
Asterisk key ( "), 36, 198 
Attack, 142 
ATN function , 305 
AUTO command, 81 , 235 
AUXI N , 215 
AUXOUT, 215 

B 
Bach, 156 
BACKUP, 236 
Bandpass, 151 
BANK, 236 
Bank table, 237 
BAS, 99 
BASIC 

abbreviations, 29 
commands, 233 
functions, 67, 303 
mat hematics, 36 
operators, 36 
statements, 233 
variab les, 325 

BASIC 2.0, 11, 229 
BASIC 7.0, 5, 229 
BEGIN:/:BEND, 77, 237 
Binary files, 124 
Bit Map mode, 98 
BLOAD, 119, 124, 238 
BOOT, 239 
Booting, 188 
BOX, 96, 102, 239 
aSAVE, 119, 124, 127, 240 
BUMp, 306 

399 INDEX 

C 
GI2S Mode, 10 
C64 Mode, 10 
Caps Lock key, 91 
Cartr idge Port , 349 
Cartridges, 12 
Cassette Port, 350 
CATALOG, 241 
Channel selector, 351 
CHAR, 96, 104, 241 
Character sets, 21 
Character string code, 69 
CHR$ codes, 174, 355, 365 
CHR$ function, 69, 306 
CIRCLE, 96, 101 , 242 
Clock, 326 
CLOSE statement, 179, 244 
CLA, 41, 100, 244 
CLR/HOME key, 26 
CMD, 245 
COLLECT, 245 
COLLISION, 245 
Colon (:), 52 
COLOR, 96, 97, 246 
Color 

code display chart, 30, 97, 98, 
247 

control , 25, 34, 223 
CH R$ codes, 355, 356 
keys, 30 
memory map, 358 
screen and border, 99 
source codes, 97 

COM, 190, 199 
Comma {,I, 28 
Command, 19 
Command keys, 21 
Command keyword , 190 
Command line, 190 
Command tail , 190 
Commodore key, 25, 26 
Composite monitor, 164 
CONCAT, 247 
CONIN:, 215 
Connections, 347 
CONOUT:, 215 
Constants, 38 
CONTinue command, 71, 248 
Control characters table, 147 
Control key, 25, 187 



Coordinate grid , 101 Dual screens, 167 
COPY, 248 DUMp, 213 
Copying music, 156 Duration. 133, 146 
Copying programs, 27, 200 DVERIFY", 46, 256 
COPYSYS. 200. 213 
COSine function , 306 
CP/M characters, 199 E 
CP/M mode, 187 Echo, 205 
CP/M Plus User's Guide, 224 ED, 195,213 
CP/M Plus 3.0, 187 Editing, 35, 205 
CTAL-, 190,206 EL variable, 326 
CuRSoR keys, 22, 173 ELSE clause, 77, 266 
Cursor, 21 END statement , 51 , 257 
Customer Support, Envelope generator, 142 
Cutoff frequency, 150 ENVELOPE, 142, 257 

EqualS (=), 39, 52 
ERASE, 212, 213 

0 ER/ERR$ variables, 85, 307, 326 
Dalassette,41 Error functions, 85 
DATA, 59, 249 Error messages, 335, 341 
Data file, 195 EU variable, 85 
DATE,213 Escape codes, 368 
DCLEAR,249 ESCape key, 87, 100, 165, 223 
DCLOSE,250 EXIT, 76, 253 
Debug, 70, 86 Exponentiation, 37 
DEC, 307 EXPonent function , 307 
Decay. 142 
DEF FN, 250 
Delay loop,54 F 
DELETE, 82, 250 40180 Display key, 91, 163 
DELete key, 24 FAST command, 89, 258 
DEVICE, 213, 215 Features, 9 
Dice, 68 FETCH, 258 
DIMension statement, 61, 251 File, 195 
DIR command, 191, 212, 213 Filename, 196 
Direct mode, 19 File specifications, 195 
DIRECTORY, 46, 252 File type, 196 
DIRSYS, 212 FILE NOT FOUND, 45 
Disk commands, 43. 179, 383 FILTER, 152, 258 
Disk di rectory, 42, 46, 181 Filter-S1D, 149 
Disk Parameters, 42, 189 Flashing cursor, 88 
DIvision, 36 FN lunction, 307 
DlOAD", 19, 45,253 FOR ... NEXT statement, 53, 259 
Dollar sign ($), 40, 149, 181, 332 FORMAT,213 
DO/LOOP, 75. 253 Formatting disks, 42, 179 
DOPEN,254 FRE function , 308 -, 
DRAW. 96, 102, 255 Frequency, 133, 140 
Drive specifier, 196 Function, 19 
05105$ variables, 326 Function keys, 27, 89. 174 
DSAVE", 19, 44, 256 

. , INDEX 



G 
Game controls and porls, 348 
GET, 57, 213, 214, 260 
GETKEY, 80, 261 
GETH statement, 261 
G064,262 
GOSUB, 64, 262 
GOTD, 33, 263 
GRAPHIC, 96, 99, 263 
Graphic characters, 27 
Graphic modes, 89, 99 
GSHAPE, 295 

H 
Harmonics, 140 
Hash mark (H) , 78, 113, 149 
HEADER, 42, 264 
HELP, 83, 90, 213, 216, 265 
HELP key, 90 
HEX, 199 
HEX$, 308 
HLP, 199 
HOME key, 26 
Hyperbolic functions, 361 

IF ... THEN statement, 51, 266 
INITDIA, 213 
Initializing, 181 
INPUT, 55, 267 
INPUT#, 267 
Input Prompt, 56 
INSerT key, 24 
INSTA,308 
INTeger function , 67, 309 

J 
JOY, 309 
Joystick ports, 348 

K 
KEY command, 90, 268 
Keyboard, 20 
Key assignment-CP/M, 222 

401 INDEX 

L 
LEFT$ function , 310 
LENgth function , 310 
lET statement, 269 
light pen, 12 
li ne Feed key, 92 
line numbers, 31 
LIST command , 32, 269 
LOAD command , 45, 180, 270 
LOADing cassette software, 180 
LOADing CP/M software, 188 
LOADing disk software, 180 
LOCATE, 271 
LOGarithm function, 310 
LOOpS, 53 
LST, 215 

M 
Machine language, 369 
Mathematics, 36, 361 
Memory maps, 357, 363 
MID$ function, 310 
Mode switching chart, 13 
MONITOR, 272 
Monitor-dual 1902, 14, 165 
Monitor-machine language, 90, 

369 
Monitor switching, 101, 166 
MOVSPR, 113, 272 
Multicolor bit mode, 98 
Multiplication, 36 
Music programs, 153, 158 
Music videos, 155 
Musical noles, 146 
Musical instruments, 144 
Musical scale, 156 

N 
Nested loops, 54 
NEW, 34, 273 
NEXT statement , 53, 259 
Noise, 141 
No Scroll key, 91, 205 
Notch Reject Filter, 155 
Notes, 146 
Numeric functions, 67 



o 
Object code file, 124 
ON GOTO/GOSUB, 65 
OPEN statement , 179,274 
Operating System, 187 
Operators 

P 

arithmetic, 36, 327 
logical , 327 
order of, 37 
relational , 52, 327 

PAINT, 96, 103, 275 
Parentheses, 38, 199 
Password, 197 
PEEK function, 66, 311 
PEN, 31 1 
PERFECT series software, 5 
Period(.), 149 
PI , 332 
PIp, 195, 201, 213 
Pixel ,98, 111 
PLAY, 145, 276 
POINTER, 312 
POKE, 66, 278 
POS function, 312 
POT, 313 
Pound symbol (#)-see hash 

mark 
PRINT, 28, 278 
PAINT USING, 78, 280 
PAINTH, 179,279 
Printer control-CP/M, 205 
PRN, 199 
Program file, 195 
Program mode, 19 
Programmable keys, 89, 174 
Programming aids, 81 
Programmer's Reference Guide, 6 
PUDEF, 79, 283 
Pulse width , 136, 143 
PUT, 213 , 214 

a 
Question mark (?), 29, 198 
Quotation marks (,,), 29 
Quote mode, 31 

402 INDEX 

R 
RAM , 65,188 
Random sounds, 138 
RCLR, 313 
ROOT, 314 
READ, 59, 283 
RECORD, 284 
Relational operators, 52 
REL, l99 
Release, 142 
REMark statement, 28, 285 
RENAME, 212, 213, 285 
RENUMBER, 81, 286 
Reset button, 163 
Reserved variables, 326 
Rest, 146 
Restore key, 26 
RESTORE statement, 50, 286 
RESUME command , 84, 287 
Return key, 21 
RETURN statement, 64, 288 
RGBI monitor, 165 
RGBI port , 164, 352 
RGR, 314 
RIGHT$ function, 314 
RND function, 68, 138, 315 
RSPCOLOA, 315 
RSPRITE, 316 
RUN command, 32, 288 
RUN/STOP key, 25, 100, 138, 146, 

163 
AWINDOW, 317 

S 
SAVE command , 44, 178, 289 
Saving programs on tape, 180 
Saving programs on disk, 178 
Sawtooth waveform , 141 
SCALE, 96, 104, 290 
SCRATCH command , 291 
SCNCLR command , 89, 290 
Screen display codes, 353 
Screen d isplay, 98, 163 
Screen memory map, 357 
Scrolling, 88, 187 
Sector, 42 
Semicolon (;), 29 
Serial port, 350 



SET, 213 
SETDEF, 205, 213 
SGN function, 318 
SSHAPE, 96, 111, 295 
Sharps (#), 149 
Sheet music, 156 
Shift key, 22 
SHOW, 213 
SID chip, 131 
SINe function, 318 
Slash key (I), 36 
SLEEp, 78, 291 
SLOW command, 89, 291 
Software-SO column, 165 
SOUND, 133, 292 
Sound Interface Device, 131 
Sound Player Program, 137 
Sound reset , 138, 146 
SPC func t ion, 318 
Split screen display, 98 
SPRCOLOR, 293 
SPRDEF, 96, 116, 293 
SPRITE, 96, 112, 294 
Spr ite Combinations, 120 
Sprite control , 112 
Sprite editor, 117 
Sprite programming, 109, 115 
Sprite memory map, 127 
Sprite movement, 113 
Sprite viewing area, 114 
Sprites, 108 
SPRSAV, 96, 112, 295 
SOR function , 67, 70, 319 
ST variable, 326 
STASH , 297 
Statement , 19, 31 
STEp, 54, 259 
STOp, 70, 297 
STOP key, 25 
Storing programs, 41, 177 
String funct ions, 67 
Strings, 29, 40 
STR$ funct ion, 70, 319 
SUB, l99 
SUBMIT, 213 
Subroutine, 64 
Subscripts, 61 
Subtraction, 36 
Sustain , 142 

'03 INDEX 

SWAp, 297 
Sweep, 134 
Syntax, 19 
Syntax error, 22 
Synthesizer, 131, 147 
SYM, l99 
SYS, 199, 297 
System prompt , 189 

T 
Tab key, 92 
TAB function , 319 
TAB stops, 88 
TANgent function , 320 
TEMPO, 145, 298 
Terminating CP/M, 216 
THEN, 51, 266 
Timbre, 140 
Time delay, 54 
TIITI$ variables , 326 
TO, 102, 259 
Track,42 
Transient Util ity commands, 190, 

211 
TRAp, 83, 298 
Triangle waveform, 141 
Trigonometric functions, 361 
TAONfTROFF, 85, 299 
TYPE command, 212, 213 
Typing rules, 27 

U 
UNTIL statement, 75, 253 
Up arrow (t) key, 37 
Upper case/graphic set, 21 , 173 
Upper/lower case sel , 21, 173 
USER, 197, 212 
User Number, 197 
User port, 352 
USA function, 320 

V 
VALue function, 70, 320 
Variables, 39, 61, 325 
VERIFY command, 46, 181, 299 
VIC chip, 95 



Video Ports, 164,351 
Voice, 131 
VOLume, 134, 145,300 

W 
WAIT command, 300 
Waveform , 131, 141, 143 
WHILE statement, 76, 253 
Wildcard , 198 
WINDOW command , 86, 301 
Windowing , 86 

X 
XOR, 321 

z 

Z80 Microprocessor, 187 

404 INDEX 


























